Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 750: 135740, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33600903

ABSTRACT

Recognizing that STEM disciplines, including neuroscience, have a long way to go to attract and retain diverse talent, educators can take action by being more intentional about their departmental curricula, course design, and pedagogical strategies. A deep body of research suggests that one way we can promote inclusion is through the use of high impact practices (HIPs). These active learning teaching practices promote deep learning and student engagement and have been shown to have a positive differential impact on historically underserved student populations. Here we describe the characteristics of two different types of HIP courses, makerspace classes, and course-based undergraduate research experiences (CUREs). In addition, we provide ideas for how these courses can be structured to help all students engage and learn. With experience overseeing a large campus-wide program introducing these course types to the curriculum, we also provide insights about faculty experiences and assessment. We propose that including these types of courses in a curriculum can engage a more diverse group of students to choose neuroscience as a major and as a career.


Subject(s)
Neurosciences/education , Practice Guidelines as Topic , Problem-Based Learning/methods , Teaching Materials
2.
Int J STEM Educ ; 7(1): 42, 2020.
Article in English | MEDLINE | ID: mdl-32850287

ABSTRACT

BACKGROUND: Mentorship has been well-established in the literature as fostering scientific identity and career pathways for underrepresented minority students in science, technology, engineering, and mathematics (STEM) fields. Mentorship is prioritized by programs that aim to increase diversity and support future leadership in STEM fields, but in-depth understanding of mentorship in these contexts remains limited. Drawing on qualitative interview data, we sought to understand the relationship between mentoring and scientific identity among a diverse sample of 24 students in one such program, in order to inform program development. RESULTS: Qualitative analysis of the data revealed that mentorship, especially research mentorship, was common and played a role in formation of scientific identity. Students with research mentors tended to say they strongly identified as scientists, whereas those who lacked research mentorship varied in their level of scientific identity. In interviews, research-mentored students described mentors as colleagues who gave them opportunities to grow and as examples to look up to. Students valued mentors with whom they identified on the basis of demographic similarity or shared values, as well as those who challenged them in their academic and research endeavors. CONCLUSIONS: Our analysis highlights how different mentoring experiences can contribute to development of future STEM leadership. We discuss implications for practice, including the need for tailored mentoring approaches and research-focused mentoring, and offer several recommendations for research and programming.

SELECTION OF CITATIONS
SEARCH DETAIL
...