Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 23(16): 8331-5, 2007 Jul 31.
Article in English | MEDLINE | ID: mdl-17602677

ABSTRACT

We carried out in-situ X-ray reflectivity study of nine n-alkane chains (CnH2n+2) on Si substrate, n in the range of 17-30. These films formed under vacuum at equilibrium vapor pressure of the respective alkane molecule. For all the alkanes studied we found a bilayer structure on the substrate, a higher density vertical layer at the air-film interface with the layer thickness equal to the all-trans length of the respective molecule, and a lower density layer below it with the molecules lying horizontal on the substrate. This model was earlier proposed for C32 films on Si by Volkmann et al.11 We observe that this model can fit the entire range of data from C17 to C30 in our experiments.

2.
Langmuir ; 21(14): 6157-60, 2005 Jul 05.
Article in English | MEDLINE | ID: mdl-15982015

ABSTRACT

We investigated an effect of CO2 sorption on the compatibility of immiscible polystyrene (PS) and polybutadiene (PB) bilayers by using in situ neutron reflectivity. By labeling either polymer with deuterium, we found that the excess CO2 molecules were adsorbed to both top PS and bottom PB layers when the bilayers were exposed to CO2 at the narrow T and P regime near the critical point of pure CO2. Furthermore, we clarified that this excess sorption of CO2 molecules increased the interfacial width between the layers up to 100 angstroms even near room temperature, while the interfacial width without CO2 exposure has been reported to be at most 40 A even at the highest temperature (T congruent with 175 degrees C).

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(6 Pt 1): 061801, 2003 Jun.
Article in English | MEDLINE | ID: mdl-16241248

ABSTRACT

The existence of a transient period during the surface enrichment of a binary polymer blend by one of its components has been suggested by previous theoretical and experimental studies as well as computer simulations. Taking advantage of the high depth resolution of neutron reflectivity and the slow dynamics of polymers near their glass transition, we investigate this early-stage surface compositional enrichment in a phase separating polymer blend for the first time. Two stages of surface enrichment layer growth are observed. A rapid local surface enrichment at the chain segmental level occurs first, followed by a slower growth of a diffuse layer having a scale on the order of the bulk correlation length and the radius of gyration of the surface enriching polymer chains.

4.
J Res Natl Inst Stand Technol ; 106(1): 187-230, 2001.
Article in English | MEDLINE | ID: mdl-27500021

ABSTRACT

The NIST Materials Science and Engineering Laboratory works with industry, standards bodies, universities, and other government laboratories to improve the nation's measurements and standards infrastructure for materials. An increasingly important component of this effort is carried out at the NIST Center for Neutron Research (NCNR), at present the most productive center of its kind in the United States. This article gives a brief historical account of the growth and activities of the Center with examples of its work in major materials research areas and describes the key role the Center can expect to play in future developments.

5.
J Biomed Mater Res ; 50(1): 75-81, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10644966

ABSTRACT

We report a new method to create a biofunctional surface in which the accessibility of a ligand is used as a means to influence the cell behavior. Supported bioactive bilayer membranes were created by Langmuir-Blodgett (LB) deposition of either a pure poly(ethylene glycol) (PEG) lipid, having PEG head groups of various lengths, or 50 mol % binary mixtures of a PEG lipid and a novel collagen-like peptide amphiphile on a hydrophobic surface. The peptide amphiphile contains a peptide synthetically lipidated by covalent linkage to hydrophobic dialkyl tails. The amphiphile head group lengths were determined using neutron reflectivity. Cell adhesion and spreading assays showed that the cell response to the membranes depends on the length difference between head groups of the membrane components. Cells adhere and spread on mixtures of the peptide amphiphile with the PEG lipids having PEG chains of 120 and 750 molecular weight (MW). In contrast, cells adhered but did not spread on the mixture containing the 2000 MW PEG. Cells did not adhere to any of the pure PEG lipid membranes or to the mixture containing the 5000 MW PEG. Selective masking of a ligand on a surface is one method of controlling the surface bioactivity.


Subject(s)
Biocompatible Materials , Cell Adhesion , Cell Division , Lipid Bilayers , Phosphatidylethanolamines , Polyethylene Glycols , Collagen , Humans , Ligands , Melanoma , Microscopy, Atomic Force , Peptides , Surface Properties , Tumor Cells, Cultured
6.
J Biomed Mater Res ; 40(3): 498-509, 1998 Jun 05.
Article in English | MEDLINE | ID: mdl-9570083

ABSTRACT

Four different poly(ethylene oxide) [PEO] molecules were compared as grafted polymer layers for biomaterials' substrates: two linear polymers and two star polymers. Conditions maximizing surface coverage for each molecule were employed with the aim of inhibiting protein adsorption and increasing the density of end groups. Neutron reflectivities of the grafted layers immersed in deuterium oxide (heavy water) were measured and used to calculate volume fraction profiles of the polymer as a function of distance from the surface. These density profiles were combined with protein adsorption data on the grafted layers to compare with recent theoretical and experimental studies of protein resistance by PEO at surfaces. We found that the grafting density is maximized by coupling the linear PEO from a K2SO4 salt buffer, which is a poor solvent for PEO. However, the grafting density of star PEO was maximized when no K2SO4 was used and the stars were dissolved near the overlap concentration. Concentration profiles obtained from the reflectivity data show that the hydrated polymers swell to approximately 10 times the dried layer thickness and exhibit a low density (maximum volume fractions < 0.4 PEO) throughout the layer. The PEO surfaces obtained with both the star and linear polymers resisted adsorption of cytochrome-c and albumin except for a small amount of cytochrome-c adsorption on the short, many-armed star polymer surface. A hypothesis of adsorption on the star polymer layer is presented and criteria for controlling receptor-mediated cell-substrate interactions by ligand-modified chain ends are discussed.


Subject(s)
Materials Testing , Polyethylene Glycols/chemistry , Adsorption , Linear Models , Microscopy, Atomic Force , Molecular Structure , Proteins/chemistry , Solvents , Surface Properties
7.
J Res Natl Inst Stand Technol ; 98(1): 47-58, 1993.
Article in English | MEDLINE | ID: mdl-28053457

ABSTRACT

Over the last 10 years, neutron reflectivity has emerged as a powerful technique for the investigation of surface and interfacial phenomena in many different fields. In this paper, a short review of some of the work on neutron reflectivity and grazing-angle diffraction as well as a description of the current and planned neutron rcflectometers at NIST is presented. Specific examples of the characterization of magnetic, superconducting, and polymeric surfaces and interfaces are included.

SELECTION OF CITATIONS
SEARCH DETAIL
...