Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Macromolecules ; 31(15): 4908-14, 1998 Jul 28.
Article in English | MEDLINE | ID: mdl-9680429

ABSTRACT

Compositional variation in blends of triblock and diblock copolymer films can be used to adjust the film response to a selective solvent. We investigated the relationship between blend composition and film structure in ordered films containing poly(styrene-b-2-vinylpyridine) (PS-P2VP) diblocks and PS-P2VP-PS triblocks. The study focuses on films possessing a lamellar morphology. Methanol, a strongly selective solvent for P2VP, is used to swell the films. Since methanol solvates P2VP but not PS, periodic multilayer structures result in which solvent-rich P2VP domains are separated by undissolved PS domains. The film structure is characterized in the dry and swollen states with neutron reflectivity. Although the dry state morphology dimensions are practically identical for all samples, in the swollen state films richer in triblock swell less due to higher density of bridges interconnecting the PS domains. Furthermore, in swollen triblock-containing samples, polymer concentration variations in P2VP domains are suppressed and the PS domains are better aligned with respect to the substrate.

2.
Macromolecules ; 31(15): 4915-25, 1998 Jul 28.
Article in English | MEDLINE | ID: mdl-9680430

ABSTRACT

We explore the interdiffusion of oppositely labeled triblock polystyrene chains, HDH/DHD, during welding in the melt using dynamic secondary ion mass spectroscopy (DSIMS) and specular neutron reflectivity (SNR). The HDH chains have the central portion of the chain deuterated (D) approximately 50% while the two ends (H) each have approximately 25% protonation; the DHD is oppositely labeled, but each set of chains contains about 50% deuteration. During welding, the deuterium depth profile exhibits "ripples" whose characteristic features, such as the time and molecular weight dependent shape, amplitude, and position, are very sensitive to the microscopic details of the polymer dynamics. The ripple experiment is especially sensitive to the presence, or absence, of topological constraints and anisotropic motion of chains. The current work significantly extends the molecular weight range up to 400 000. This allows greater separation of the six key ripple features used in deciphering the correct polymer dynamics model at the polymer-polymer interface. The DSIMS and SNR experimental results are compared to theoretical predictions and ripple simulations for Rouse, polymer mode-coupling, reptation (with and without tube broadening), and other phenomenological dynamics models. The six ripple characteristics were found to be perfectly correlated and convincingly consistent with the predictions of the reptation dynamics model. The ripple results are in significant disagreement with the polymer mode-coupling model proposed by Schweizer and other tubeless models. We conclude that the reptation model, proposed by DeGennes in 1971 with parallel developments by Edwards, is the correct model to describe the dynamics of polymer interdiffusion.

3.
8.
Phys Rev Lett ; 72(18): 2899-2902, 1994 May 02.
Article in English | MEDLINE | ID: mdl-10056013
12.
Phys Rev Lett ; 70(9): 1352, 1993 Mar 01.
Article in English | MEDLINE | ID: mdl-10054355
13.
Phys Rev Lett ; 70(3): 307-310, 1993 Jan 18.
Article in English | MEDLINE | ID: mdl-10054079
14.
Phys Rev Lett ; 68(1): 67-70, 1992 Jan 06.
Article in English | MEDLINE | ID: mdl-10045114
15.
18.
Phys Rev B Condens Matter ; 32(5): 3309-3311, 1985 Sep 01.
Article in English | MEDLINE | ID: mdl-9937456
SELECTION OF CITATIONS
SEARCH DETAIL
...