Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 70: 103525, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34392148

ABSTRACT

BACKGROUND: While our battle with the COVID-19 pandemic continues, a multitude of Omics data have been generated from patient samples in various studies. Translation of these data into clinical interventions against COVID-19 remains to be accomplished. Exploring host response to COVID-19 in the upper respiratory tract can unveil prognostic markers and therapeutic targets. METHODS: We conducted a meta-analysis of published transcriptome and proteome profiles of respiratory samples of COVID-19 patients to shortlist high confidence upregulated host factors. Subsequently, mRNA overexpression of selected genes was validated in nasal swabs from a cohort of COVID-19 positive/negative, symptomatic/asymptomatic individuals. Guided by this analysis, we sought to check for potential drug targets. An FDA-approved drug, Auranofin, was tested against SARS-CoV-2 replication in cell culture and Syrian hamster challenge model. FINDINGS: The meta-analysis and validation in the COVID-19 cohort revealed S100 family genes (S100A6, S100A8, S100A9, and S100P) as prognostic markers of severe COVID-19. Furthermore, Thioredoxin (TXN) was found to be consistently upregulated. Auranofin, which targets Thioredoxin reductase, was found to mitigate SARS-CoV-2 replication in vitro. Furthermore, oral administration of Auranofin in Syrian hamsters in therapeutic as well as prophylactic regimen reduced viral replication, IL-6 production, and inflammation in the lungs. INTERPRETATION: Elevated mRNA level of S100s in the nasal swabs indicate severe COVID-19 disease, and FDA-approved drug Auranofin mitigated SARS-CoV-2 replication in preclinical hamster model. FUNDING: This study was supported by the DBT-IISc partnership program (DBT (IED/4/2020-MED/DBT)), the Infosys Young Investigator award (YI/2019/1106), DBT-BIRAC grant (BT/CS0007/CS/02/20) and the DBT-Wellcome Trust India Alliance Intermediate Fellowship (IA/I/18/1/503613) to ST lab.


Subject(s)
COVID-19/genetics , Nasopharynx/virology , Proteome/genetics , Transcriptome/genetics , Adult , Animals , Biomarkers/metabolism , COVID-19/pathology , COVID-19/virology , Cell Line , Chlorocebus aethiops , Cohort Studies , Female , HEK293 Cells , Humans , Inflammation/genetics , Inflammation/virology , Interleukin-6/genetics , Male , Mesocricetus , Middle Aged , Nasopharynx/pathology , Pandemics , Prognosis , RNA, Messenger/genetics , SARS-CoV-2/pathogenicity , Up-Regulation/genetics , Vero Cells , Virus Replication/genetics
2.
Data Brief ; 33: 106460, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33204776

ABSTRACT

The dataset contains images of 10 out of 32 notified Indian basmati seeds varieties (by the Government of India). Indian basmati paddy varieties included in the dataset are 1121, 1509, 1637, 1718, 1728, BAS-370, CSR 30, Type-3/Dehraduni Basmati, PB-1 and PB-6. Moreover, several images of other seeds and related entities available in the household have also been included in the dataset. Thus, the dataset contains 11 classes such that ten classes contain images from ten different basmati paddy varieties. In contrast, the 11th class- named "Unknown" contains images from a mixture of two morphologically similar paddy varieties (1121 and 1509), different pulses, other grains and related food entities. The Unknown class is useful in discriminating the paddy seeds from other types of seeds and related food entities. All the images were captured (in standard conditions) manually using an apparatus developed in-house and a tablet with a five-megapixel camera (5MP). The camera was used to capture 3210 RGB coloured images in JPG format. The data pre-processing was performed to generate the ready-to-use images for training and testing machine learning-based models. AI-based paddy seed variety classification models have been developed using the dataset. The dataset can be used to generate different types of AI-based models for adulteration detection, automated classification models (along with independent devices) at the time of rice threshing, and to increase the classification potential (Supplementing images representing additional basmati varieties).

3.
Front Genet ; 11: 571274, 2020.
Article in English | MEDLINE | ID: mdl-33173539

ABSTRACT

Understanding the host regulatory mechanisms opposing virus infection and virulence can provide actionable insights to identify novel therapeutics against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We have used a network biology approach to elucidate the crucial factors involved in host responses involving host-microRNA (miRNA) interactions with host and virus genes using recently published experimentally verified protein-protein interaction data. We were able to identify 311 host genes to be potentially targetable by 2,197 human miRNAs. These miRNAs are known to be involved in various biological processes, such as T-cell differentiation and activation, virus replication, and immune system. Among these, the anti-viral activity of 38 miRNAs to target 148 host genes is experimentally validated. Six anti-viral miRNAs, namely, hsa-miR-1-3p, hsa-miR-17-5p, hsa-miR-199a-3p, hsa-miR-429, hsa-miR-15a-5p, and hsa-miR-20a-5p, are previously reported to be anti-viral in respiratory diseases and were found to be downregulated. The interaction network of the 2,197 human miRNAs and interacting transcription factors (TFs) enabled the identification of 51 miRNAs to interact with 77 TFs inducing activation or repression and affecting gene expression of linked genes. Further, from the gene regulatory network analysis, the top five hub genes HMOX1, DNMT1, PLAT, GDF1, and ITGB1 are found to be involved in interferon (IFN)-α2b induction, epigenetic modification, and modulation of anti-viral activity. The comparative miRNAs target identification analysis in other respiratory viruses revealed the presence of 98 unique host miRNAs targeting SARS-CoV-2 genome. Our findings identify prioritized key regulatory interactions that include miRNAs and TFs that provide opportunities for the identification of novel drug targets and development of anti-viral drugs.

4.
Data Brief ; 32: 106207, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32864402

ABSTRACT

The identification of host-miRNAs targeting mutated virus genes is crucial to understand the miRNA mediated host-defense mechanism in virus infections. To understand the mechanism in COVID-19 infections, we collected genome sequences of SARS-CoV-2 with its metadata from the GISAID database (submitted till April 2020) and identified mutational changes in the sequences. The dataset consists of genes with mutation event count and entropy scores. We predicted host-miRNAs targeting the genes in the genomes and compared it with that in related viral species. We have identified 2284 miRNAs targeting MERS genomes, 2074 miRNAs targeting SARS genomes, and 1599 miRNAs targeting SARS-CoV-2 genomes, identified using the miRNA target prediction software miRanda. The host miRNAs targeting SARS-CoV-2 genes were further validated to be anti-viral miRNAs and their role in respiratory diseases through a literature survey, which helped in the identification of 42 conserved antiviral miRNAs. The data could be used to validate the anti-viral role of the predicted miRNAs and design miRNA-based therapeutics against SARS-CoV-2.

5.
Heliyon ; 6(9): e04658, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32844125

ABSTRACT

We have performed an integrative analysis of SARS-CoV-2 genome sequences from different countries. Apart from mutational analysis, we have predicted host antiviral miRNAs targeting virus genes, PTMs in the virus proteins and antiviral peptides. A comparison of the analyses with other coronavirus genomes has been performed, wherever possible. Our analysis confirms unique features in the SARS-CoV-2 genomes absent in other evolutionarily related coronavirus family genomes, which presumably confer unique infection, transmission and virulence capabilities to the virus. For understanding the crucial factors involved in host-virus interactions, we have performed Bioinformatics aided analysis integrated with experimental data related to other corona viruses. We have identified 42 conserved miRNAs that can potentially target SARS-CoV-2 genomes. Interestingly, out of these, 3 are previously reported to exhibit antiviral activity against other respiratory viruses. Gene expression analysis of known host antiviral factors reveals significant over-expression of IFITM3 and down regulation of cathepsins during SARS-CoV-2 infection, suggesting its active role in pathogenesis and delayed immune response. We also predicted antiviral peptides which can be used in designing peptide based drugs against SARS-CoV-2. Our analysis explores the functional impact of the virus mutations on its proteins and interaction of its genes with host antiviral mechanisms.

6.
Sci Rep ; 9(1): 4627, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30874591

ABSTRACT

MicroRNAs (miRNAs) have emerged to be essential constituents of host antiviral-defense mechanisms. The miRNA mediated antiviral mechanism was first experimentally established in animals, which proved that host miRNAs regulate viral gene expression by targeting the animal virus mRNAs. There are comparatively fewer reports about such interactions in plants, however, artificial miRNA studies prove that miRNAs play similar antiviral role in plants too. To explore the extent of this phenomenon in plant genomes, and in the absence of any publicly available resource for prediction of plant miRNAs targeting viruses, we were motivated to predict such interactions of plant miRNAs and viral genes. The intriguing results of the predictions are compiled as a database, which we have named as PAmiRDB. The current version of PAmiRDB includes more than 2600 plant miRNAs and their specific interactions with corresponding targets in approximately 500 viral species (predominantly from the major plant-infecting virus families of geminiviruses and potyviruses). PAmiRDB is a database of known plant miRNAs and their predicted targets in virus genomes. The innovative database query-interface enables global and comprehensive investigation of such predicted interactions between host miRNAs and viral genes. The database integrated-tools also helps researchers to design experiments to confirm such interactions. PAmiRDB is available at http://bioinfo.icgeb.res.in/pamirdb.


Subject(s)
MicroRNAs/genetics , Plant Viruses/genetics , Plants/genetics , Databases, Genetic , Geminiviridae/genetics , Genome, Plant/genetics , Genome, Viral/genetics , Host-Pathogen Interactions/genetics , Internet , Potyvirus/genetics , RNA, Messenger/genetics , RNA, Plant/genetics
7.
Front Plant Sci ; 10: 1791, 2019.
Article in English | MEDLINE | ID: mdl-32158451

ABSTRACT

The purity of seeds is the most important factor in agriculture that determines crop yield, price, and quality. Rice is a major staple food consumed in different forms globally. The identification of high yielding and good quality paddy seeds is a challenging job and mainly dependent on expensive molecular techniques. The practical and day-to-day usage of the molecular-laboratory based techniques are very costly and time-consuming, and involves several logistical issues too. Moreover, such techniques are not easily accessible to paddy farmers. Thus, there is an unmet need to develop alternative, easily accessible and rapid methods for correct identification of paddy seed varieties, especially of commercial importance. We have developed iRSVPred, deep learning based on seed images, for the identification and differentiation of ten major varieties of basmati rice namely, Pusa basmati 1121 (1121), Pusa basmati 1509 (1509), Pusa basmati 1637 (1637), salt-tolerant basmati rice variety CSR 30 (CSR-30), Dehradoon basmati Type-3 (DHBT-3), Pusa Basmati-1 (PB-1), Pusa Basmati-6 (PB-6), Basmati -370 (BAS-370), Pusa Basmati 1718 (1718) and Pusa Basmati 1728 (1728). The method has an overall accuracy of 100% and 97% on the training set (total 61,632 images) and internal validation set (total 15,408 images), respectively. Furthermore, accuracies of greater than or equal to 80% have been achieved for all the ten varieties on the external validation dataset (642 images) used in the study. The iRSVPred web-server is freely available at http://14.139.62.220/rice/.

SELECTION OF CITATIONS
SEARCH DETAIL
...