Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Electromagn Biol Med ; 43(1-2): 125-134, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38533761

ABSTRACT

The present study analyzed the microwave ablation of cancerous tumors located in six major cancer-prone organs and estimated the significance of input power and treatment time parameters in the apt positioning of the trocar into the tissue during microwave ablation. The present study has considered a three-dimensional two-compartment tumour-embedded tissue model. FEA based COMSOL Multiphysics software with inbuilt bioheat transfer, electromagnetic waves, heat transfer in solids and fluids, and laminar flow physics has been used to obtain the numerical results. Based on the mortality rates caused by cancer, the present study has considered six major organs affected by cancer, viz. lung, breast, stomach/gastric, liver, liver (with colon metastasis), and kidney for MWA analysis. The input power (100 W) and ablation times (4 minutes) with apt and inapt positioning of the trocar have been considered to compare the ablation volume of various cancerous tissues. The present study addresses one of the major problems clinicians face, i.e. the proper placement of the trocar due to poor imaging techniques and human error, resulting in incomplete tumor ablation and increased surgical procedures. The highest values of the ablation region have been observed for the liver, colon metastatic liver and breast cancerous tissues compared with other organs at the same operating conditions.


The present study has investigated the application of microwave ablation for cancer treatment in six major organs, specifically emphasizing the evaluation of ablation volume during the procedure. Using COMSOL-Multiphysics software, the study has investigated MWA of tumor embedded organs in the lung, breast, stomach, liver, and kidney. The positioning of the trocar, a crucial element in the treatment process, has been examined to address challenges in effectively ablating tumors.From the results, it has been revealed that liver, colon metastatic liver, and breast cancer tissues exhibited the largest areas of ablation volume compared with other organs.Organs like the breast and hepatic glands, characterized by lower heat capacity and density, have shown larger ablation zones. Trocar positioning significantly influenced the stomach, liver, and kidney, where improper placement led to notable increases in ablation volume, posing a risk of unintended damage to healthy tissue.Further, the study has concluded that precise trocar positioning plays a crucial role in optimizing microwave ablation. This precision has the potential to enhance the effectiveness of cancer treatments while minimizing harm to healthy tissue. The insights gained from this research offer valuable information for clinicians looking to enhance the precision of cancer therapies, ultimately aiming for improved outcomes for patients.


Subject(s)
Ablation Techniques , Microwaves , Neoplasms , Humans , Ablation Techniques/instrumentation , Neoplasms/pathology , Neoplasms/surgery , Surgical Instruments , Finite Element Analysis , Models, Biological
2.
Proc Inst Mech Eng H ; 237(7): 905-915, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37300398

ABSTRACT

The microwave ablation (MWA) of large hepatic gland tumour using multiple trocars operated at 2.45/6 GHz frequencies has been analysed. The ablation region (in vitro) obtained using parallel and non-parallel insertion of multiple trocars into the tissue has been analysed and compared with the numerical studies. The present study has considered a typical triangular-shaped hepatic gland model for experimental and numerical analysis. COMSOL Multiphysics software with inbuilt bioheat transfer, electromagnetic waves, heat transfer in solids and fluids and laminar flow physics has been used to obtain the numerical results. Experimental analysis has been conducted on egg white using a market-available microwave ablation device. It has been found from the present study that MWA operated at 2.45/6 GHz with the non-parallel position of multiple trocars into the tissue leads to a considerable increase in the ablation region as compared to the parallel insertion of trocars. Hence, non-parallel insertion of trocars is suitable to treat irregular-shaped large cancerous tumours (>3 cm). The non-parallel simultaneous insertion of trocars can overcome the healthy tissue ablation issue as well as the problem associated with indentation. Further, reasonable accuracy (with the difference being nearly ±0.1 cm in ablation diameter) has been achieved in comparing the ablation region and temperature variation between experimental and numerical studies. The present study may create a new path in the ablation of large size tumours (>3 cm) with multiple trocars of all shapes by sparing the healthy tissue.


Subject(s)
Ablation Techniques , Catheter Ablation , Liver Neoplasms , Humans , Microwaves/therapeutic use , Ablation Techniques/methods , Liver Neoplasms/surgery , Temperature
3.
Med Biol Eng Comput ; 61(5): 1113-1131, 2023 May.
Article in English | MEDLINE | ID: mdl-36680706

ABSTRACT

Microwave ablation (MWA) is a newly developing minimally invasive thermal therapies technology. The ablation region obtained during MWA mainly depends on the type and efficiency of the trocar as well as the energy transfer from the generator to the biological tissue. In the present article, a novel trocar for MWA therapies has been proposed. A 3-dimensional tumor-embedded hepatic gland ablated with the novel MWA trocar has been numerically analyzed using finite element method-based software. The novel trocar consists of a flexible dual tine supplied with a microwave power of 15 W at 2.45/6 GHz for an ablation time of 10 min for all the cases. Various combinations of supplied energy and deploying lengths result in tumor ablations ranging from 2.7 to 4 cm in diameter. Supplying energy at high frequency (6 GHz) to the trocar results in ablating tumors (> 4 cm) with spherical ablation region. The novel trocar generated large ablation regions which are 2-3 times bigger than the tumors obtained using existing single-slot non-cooled trocars. This research on novel trocar may help clinicians in treating large size tumors of symmetric and asymmetric shapes by overcoming the problem associated with precise position of trocar into the tissue.


Subject(s)
Catheter Ablation , Neoplasms , Radiofrequency Ablation , Humans , Microwaves/therapeutic use , Neoplasms/surgery , Neoplasms/pathology , Liver/pathology , Surgical Instruments , Catheter Ablation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...