Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 13(1): e9673, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36699574

ABSTRACT

Obligate pollination mutualisms, in which plant and pollinator lineages depend on each other for reproduction, often exhibit high levels of species specificity. However, cases in which two or more pollinator species share a single host species (host sharing), or two or more host species share a single pollinator species (pollinator sharing), are known to occur in current ecological time. Further, evidence for host switching in evolutionary time is increasingly being recognized in these systems. The degree to which departures from strict specificity differentially affect the potential for hybridization and introgression in the associated host or pollinator is unclear. We addressed this question using genome-wide sequence data from five sympatric Panamanian free-standing fig species (Ficus subgenus Pharmacosycea, section Pharmacosycea) and their six associated fig-pollinator wasp species (Tetrapus). Two of the five fig species, F. glabrata and F. maxima, were found to regularly share pollinators. In these species, ongoing hybridization was demonstrated by the detection of several first-generation (F1) hybrid individuals, and historical introgression was indicated by phylogenetic network analysis. By contrast, although two of the pollinator species regularly share hosts, all six species were genetically distinct and deeply divergent, with no evidence for either hybridization or introgression. This pattern is consistent with results from other obligate pollination mutualisms, suggesting that, in contrast to their host plants, pollinators appear to be reproductively isolated, even when different species of pollinators mate in shared hosts.

2.
Mol Ecol ; 31(7): 2106-2123, 2022 04.
Article in English | MEDLINE | ID: mdl-35090071

ABSTRACT

The specificity of pollinator host choice influences opportunities for reproductive isolation in their host plants. Similarly, host plants can influence opportunities for reproductive isolation in their pollinators. For example, in the fig and fig wasp mutualism, offspring of fig pollinator wasps mate inside the inflorescence that the mothers pollinate. Although often host specific, multiple fig pollinator species are sometimes associated with the same fig species, potentially enabling hybridization between wasp species. Here, we study the 19 pollinator species (Pegoscapus spp.) associated with an entire community of 16 Panamanian strangler fig species (Ficus subgenus Urostigma, section Americanae) to determine whether the previously documented history of pollinator host switching and current host sharing predicts genetic admixture among the pollinator species, as has been observed in their host figs. Specifically, we use genome-wide ultraconserved element (UCE) loci to estimate phylogenetic relationships and test for hybridization and introgression among the pollinator species. In all cases, we recover well-delimited pollinator species that contain high interspecific divergence. Even among pairs of pollinator species that currently reproduce within syconia of shared host fig species, we found no evidence of hybridization or introgression. This is in contrast to their host figs, where hybridization and introgression have been detected within this community, and more generally, within figs worldwide. Consistent with general patterns recovered among other obligate pollination mutualisms (e.g. yucca moths and yuccas), our results suggest that while hybridization and introgression are processes operating within the host plants, these processes are relatively unimportant within their associated insect pollinators.


Subject(s)
Ficus , Wasps , Animals , Ficus/genetics , Hybridization, Genetic , Phylogeny , Pollination/genetics , Symbiosis/genetics , Wasps/genetics
3.
Mol Phylogenet Evol ; 166: 107320, 2022 01.
Article in English | MEDLINE | ID: mdl-34626810

ABSTRACT

Evolutionary biologists have long sought to disentangle phylogenetic relationships among taxa spanning the tree of life, an increasingly important task as anthropogenic influences accelerate population declines and species extinctions, particularly in insects. Phylogenetic analyses are commonly used to identify unique evolutionary lineages, to clarify taxonomic designations of the focal taxa, and to inform conservation decisions. Advances in DNA sequencing techniques have increasingly facilitated the ability of researchers to apply genomic methods to phylogenetic analyses, even for non-model organisms. Stoneflies are non-model insects that are important bioindicators of the quality of freshwater habitats and landscape disturbance as they spend the immature stages of their life cycles in fresh water, and the adult stages in terrestrial environments. Phylogenetic relationships within the stonefly genus Suwallia (Insecta: Plecoptera: Chloroperlidae) are poorly understood, and have never been assessed using molecular data. We used DNA sequence data from genome-wide ultraconserved element loci to generate the first molecular phylogeny for the group and assess its monophyly. We found that Palearctic and Nearctic Suwallia do not form reciprocally monophyletic clades, and that a biogeographic history including dispersal, vicariance, and founder event speciation via jump dispersal best explains the geographic distribution of this group. Our results also strongly suggest that Neaviperla forcipata (Neave, 1929) is nested within Suwallia, and the concept of the genus Suwallia should be revised to include it. Thus, we formally propose a new taxonomic combination wherein Neaviperla forcipata (Neave, 1929) is reclassified as Suwallia forcipata (Neave, 1929). Moreover, some Suwallia species (e.g., S. amoenacolens, S. kerzhneri, S. marginata, S. pallidula, and S. starki) exhibit pronounced cryptic diversity that is worthy of further investigation. These findings provide a first glimpse into the evolutionary history of Suwallia, improve our understanding of stonefly diversity in the tribe Suwallini, and highlight areas where additional research is needed.


Subject(s)
Genomics , Insecta , Animals , Base Sequence , Insecta/genetics , Phylogeny , Sequence Analysis, DNA
4.
Evolution ; 73(11): 2295-2311, 2019 11.
Article in English | MEDLINE | ID: mdl-31339553

ABSTRACT

The fig and pollinator wasp obligate mutualism is diverse (∼750 described species), ecologically important, and ancient (∼80 Ma). Once thought to be an example of strict one-to-one cospeciation, current thinking suggests genera of pollinator wasps codiversify with corresponding sections of figs, but the degree to which cospeciation or other processes contribute to the association at finer scales is unclear. Here, we use genome-wide sequence data from a community of Panamanian strangler figs and associated wasp pollinators to estimate the relative contributions of four evolutionary processes generating cophylogenetic patterns in this mutualism: cospeciation, host switching, pollinator speciation, and pollinator extinction. Using a model-based approach adapted from the study of gene family evolution, our results demonstrate the importance of host switching of pollinator wasps at this fine phylogenetic and regional scale. Although we estimate a modest amount of cospeciation, simulations reveal the number of putative cospeciation events to be consistent with what would be expected by chance. Additionally, model selection tests identify host switching as a critical parameter for explaining cophylogenetic patterns in this system. Our study demonstrates a promising approach through which the history of evolutionary association between interacting lineages can be rigorously modeled and tested in a probabilistic phylogenetic framework.


Subject(s)
Biological Coevolution , Ficus/genetics , Genetic Variation , Pollination , Wasps/genetics , Animals , Ecosystem , Ficus/physiology , Models, Genetic , Wasps/physiology
5.
Mol Ecol ; 26(13): 3533-3545, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28390087

ABSTRACT

Biogeographic barriers have long been implicated as drivers of biological diversification, but how these barriers influence co-occurring taxa can vary depending on factors intrinsic to the organism and in their relationships with other species. Due to the interdependence among taxa, ecological communities present a compelling opportunity to explore how interactions among species may lead to a shared response to historical events. Here we collect single nucleotide polymorphism data from five commensal arthropods associated with the Sarracenia alata carnivorous pitcher plant, and test for codiversification across the Mississippi River, a major biogeographic barrier in the southeastern United States. Population genetic structure in three of the ecologically dependent arthropods mirrors that of the host pitcher plant, with divergence time estimates suggesting two of the species (the pitcher plant moth Exyra semicrocea and a flesh fly Sarcophaga sarraceniae) dispersed synchronously across this barrier along with the pitcher plant. Patterns in population size and genetic diversity suggest the plant and ecologically dependent arthropods dispersed from east to west across the Mississippi River. In contrast, species less dependent on the plant ecologically show discordant phylogeographic patterns. This study demonstrates that ecological relationships may be an important predictor of codiversification, and supports recent suggestions that organismal trait data should be prominently featured in comparative phylogeographic investigations.


Subject(s)
Arthropods/classification , Biota , Sarraceniaceae , Animal Distribution , Animals , Genetic Variation , Phylogeny , Phylogeography , Polymorphism, Single Nucleotide , Population Density , Rivers , Southeastern United States
6.
Evolution ; 70(5): 1105-19, 2016 05.
Article in English | MEDLINE | ID: mdl-27076412

ABSTRACT

Comparative phylogeographic investigations have identified congruent phylogeographic breaks in co-distributed species in nearly every region of the world. The qualitative assessments of phylogeographic patterns traditionally used to identify such breaks, however, are limited because they rely on identifying monophyletic groups across species and do not account for coalescent stochasticity. Only long-standing phylogeographic breaks are likely to be obvious; many species could have had a concerted response to more recent landscape events, yet possess subtle signs of phylogeographic congruence because ancestral polymorphism has not completely sorted. Here, we introduce Phylogeographic Concordance Factors (PCFs), a novel method for quantifying phylogeographic congruence across species. We apply this method to the Sarracenia alata pitcher plant system, a carnivorous plant with a diverse array of commensal organisms. We explore whether a group of ecologically associated arthropods have co-diversified with the host pitcher plant, and identify if there is a positive correlation between ecological interaction and PCFs. Results demonstrate that multiple arthropods share congruent phylogeographic breaks with S. alata, and provide evidence that the level of ecological association can be used to predict the degree of similarity in the phylogeographic pattern. This study outlines an approach for quantifying phylogeographic congruence, a central concept in biogeographic research.


Subject(s)
Arthropods/genetics , Evolution, Molecular , Models, Genetic , Polymorphism, Genetic , Sarraceniaceae/genetics , Animals , Arthropods/physiology , Ecosystem , Phylogeography , Sarraceniaceae/physiology , Symbiosis/genetics
7.
PeerJ ; 4: e1576, 2016.
Article in English | MEDLINE | ID: mdl-26788436

ABSTRACT

Understanding if the members of an ecological community have co-diversified is a central concern of evolutionary biology, as co-diversification suggests prolonged association and possible coevolution. By sampling associated species from an ecosystem, researchers can better understand how abiotic and biotic factors influence diversification in a region. In particular, studies of co-distributed species that interact ecologically can allow us to disentangle the effect of how historical processes have helped shape community level structure and interactions. Here we investigate the Sarracenia alata pitcher plant system, an ecological community where many species from disparate taxonomic groups live inside the fluid-filled pitcher leaves. Direct sequencing of the eukaryotes present in the pitcher plant fluid enables us to better understand how a host plant can shape and contribute to the genetic structure of its associated inquilines, and to ask whether genetic variation in the taxa are structured in a similar manner to the host plant. We used 454 amplicon-based metagenomics to demonstrate that the pattern of genetic diversity in many, but not all, of the eukaryotic community is similar to that of S. alata, providing evidence that associated eukaryotes share an evolutionary history with the host pitcher plant. Our work provides further evidence that a host plant can influence the evolution of its associated commensals.

8.
Mol Ecol ; 24(6): 1164-71, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25678037

ABSTRACT

Empirical phylogeographic studies have progressively sampled greater numbers of loci over time, in part motivated by theoretical papers showing that estimates of key demographic parameters improve as the number of loci increases. Recently, next-generation sequencing has been applied to questions about organismal history, with the promise of revolutionizing the field. However, no systematic assessment of how phylogeographic data sets have changed over time with respect to overall size and information content has been performed. Here, we quantify the changing nature of these genetic data sets over the past 20 years, focusing on papers published in Molecular Ecology. We found that the number of independent loci, the total number of alleles sampled and the total number of single nucleotide polymorphisms (SNPs) per data set has improved over time, with particularly dramatic increases within the past 5 years. Interestingly, uniparentally inherited organellar markers (e.g. animal mitochondrial and plant chloroplast DNA) continue to represent an important component of phylogeographic data. Single-species studies (cf. comparative studies) that focus on vertebrates (particularly fish and to some extent, birds) represent the gold standard of phylogeographic data collection. Based on the current trajectory seen in our survey data, forecast modelling indicates that the median number of SNPs per data set for studies published by the end of the year 2016 may approach ~20,000. This survey provides baseline information for understanding the evolution of phylogeographic data sets and underscores the fact that development of analytical methods for handling very large genetic data sets will be critical for facilitating growth of the field.


Subject(s)
Gene Flow , Phylogeny , Ursidae/genetics , Animals , Female , Male
9.
Syst Biol ; 63(3): 322-33, 2014 May.
Article in English | MEDLINE | ID: mdl-23985785

ABSTRACT

Model checking is a critical part of Bayesian data analysis, yet it remains largely unused in systematic studies. Phylogeny estimation has recently moved into an era of increasingly complex models that simultaneously account for multiple evolutionary processes, the statistical fit of these models to the data has rarely been tested. Here we develop a posterior predictive simulation-based model check for a commonly used multispecies coalescent model, implemented in *BEAST, and apply it to 25 published data sets. We show that poor model fit is detectable in the majority of data sets; that this poor fit can mislead phylogenetic estimation; and that in some cases it stems from processes of inherent interest to systematists. We suggest that as systematists scale up to phylogenomic data sets, which will be subject to a heterogeneous array of evolutionary processes, critically evaluating the fit of models to data is an analytical step that can no longer be ignored.


Subject(s)
Classification , Computer Simulation/standards , Models, Biological , Eukaryota/classification , Eukaryota/genetics , Phylogeny
10.
Mol Ecol ; 22(15): 4014-28, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23848064

ABSTRACT

Phylogeographic inference has typically relied on analyses of data from one or a few genes to provide estimates of demography and population histories. While much has been learned from these studies, all phylogeographic analysis is conditioned on the data, and thus, inferences derived from data that represent a small sample of the genome are unavoidably tenuous. Here, we demonstrate one approach for moving beyond classic phylogeographic research. We use sequence capture probes and Illumina sequencing to generate data from >400 loci in order to infer the phylogeographic history of Salix melanopsis, a riparian willow with a disjunct distribution in coastal and the inland Pacific Northwest. We evaluate a priori phylogeographic hypotheses using coalescent models for parameter estimation, and the results support earlier findings that identified post-Pleistocene dispersal as the cause of the disjunction in S. melanopsis. We also conduct a series of model selection exercises using IMa2, Migrate-n and ∂a∂i. The resulting ranking of models indicates that refugial dynamics were complex, with multiple regions in the inland regions serving as the source for postglacial colonization. Our results demonstrate that new sources of data and new approaches to data analysis can rejuvenate phylogeographic research by allowing for the identification of complex models that enable researchers to both identify and estimate the most relevant parameters for a given system.


Subject(s)
Models, Genetic , Salix/genetics , Selection, Genetic , Evolution, Molecular , Genetic Variation , Northwestern United States , Phylogeography , Sequence Analysis, DNA
11.
Mol Ecol ; 22(17): 4369-83, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23855767

ABSTRACT

Species delimitation is the act of identifying species-level biological diversity. In recent years, the field has witnessed a dramatic increase in the number of methods available for delimiting species. However, most recent investigations only utilize a handful (i.e. 2-3) of the available methods, often for unstated reasons. Because the parameter space that is potentially relevant to species delimitation far exceeds the parameterization of any existing method, a given method necessarily makes a number of simplifying assumptions, any one of which could be violated in a particular system. We suggest that researchers should apply a wide range of species delimitation analyses to their data and place their trust in delimitations that are congruent across methods. Incongruence across the results from different methods is evidence of either a difference in the power to detect cryptic lineages across one or more of the approaches used to delimit species and could indicate that assumptions of one or more of the methods have been violated. In either case, the inferences drawn from species delimitation studies should be conservative, for in most contexts it is better to fail to delimit species than it is to falsely delimit entities that do not represent actual evolutionary lineages.


Subject(s)
Classification/methods , Genetic Speciation , Models, Genetic , Biodiversity , Genetics, Population , Phylogeny
12.
Syst Biol ; 62(6): 805-23, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23771888

ABSTRACT

Species are a fundamental unit for biological studies, yet no uniform guidelines exist for determining species limits in an objective manner. Given the large number of species concepts available, defining species can be both highly subjective and biased. Although morphology has been commonly used to determine species boundaries, the availability and prevalence of genetic data has allowed researchers to use such data to make inferences regarding species limits. Genetic data also have been used in the detection of cryptic species, where other lines of evidence (morphology in particular) may underestimate species diversity. In this study, we investigate species limits in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus) from California. Multiple approaches were used to determine species boundaries in this highly genetically fragmented group, including both multilocus discovery and validation approaches (plus a chimeric approach). Additionally, we introduce a novel tree-based discovery approach using species trees. Results suggest that this complex includes multiple cryptic species, with two groupings consistently recovered across analyses. Due to incongruence across analyses for the remaining samples, we take a conservative approach and recognize a three species complex, and formally describe two new species (Aliatypus roxxiae, sp. nov. and Aliatypus starretti, sp. nov.). This study helps to clarify species limits in a genetically fragmented group and provides a framework for identifying and defining the cryptic lineage diversity that prevails in many organismal groups.


Subject(s)
Phylogeny , Spiders/classification , Spiders/genetics , Animals , California , DNA, Ribosomal/genetics , Electron Transport Complex IV/genetics , Microtubule Proteins/genetics , Peptide Elongation Factor 1/genetics , Reproducibility of Results , Species Specificity , Spiders/anatomy & histology
13.
PLoS One ; 6(9): e25355, 2011.
Article in English | MEDLINE | ID: mdl-21966507

ABSTRACT

BACKGROUND: The California Floristic Province is a biodiversity hotspot, reflecting a complex geologic history, strong selective gradients, and a heterogeneous landscape. These factors have led to high endemic diversity across many lifeforms within this region, including the richest diversity of mygalomorph spiders (tarantulas, trapdoor spiders, and kin) in North America. The trapdoor spider genus Aliatypus encompasses twelve described species, eleven of which are endemic to California. Several Aliatypus species show disjunct distributional patterns in California (some are found on both sides of the vast Central Valley), and the genus as a whole occupies an impressive variety of habitats. METHODOLOGY/PRINCIPAL FINDINGS: We collected specimens from 89 populations representing all described species. DNA sequence data were collected from seven gene regions, including two newly developed for spider systematics. Bayesian inference (in individual gene tree and species tree approaches) recovered a general "3 clade" structure for the genus (A. gulosus, californicus group, erebus group), with three other phylogenetically isolated species differing slightly in position across different phylogenetic analyses. Because of extremely high intraspecific divergences in mitochondrial COI sequences, the relatively slowly evolving 28S rRNA gene was found to be more useful than mitochondrial data for identification of morphologically indistinguishable immatures. For multiple species spanning the Central Valley, explicit hypothesis testing suggests a lack of monophyly for regional populations (e.g., western Coast Range populations). Phylogenetic evidence clearly shows that syntopy is restricted to distant phylogenetic relatives, consistent with ecological niche conservatism. CONCLUSIONS/SIGNIFICANCE: This study provides fundamental insight into a radiation of trapdoor spiders found in the biodiversity hotspot of California. Species relationships are clarified and undescribed lineages are discovered, with more geographic sampling likely to lead to additional species diversity. These dispersal-limited taxa provide novel insight into the biogeography and Earth history processes of California.


Subject(s)
Spiders/genetics , Animals , Biodiversity , California , Geography , Phylogeny , RNA, Ribosomal, 28S/genetics , Spiders/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...