Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
2.
CBE Life Sci Educ ; 21(2): ar24, 2022 06.
Article in English | MEDLINE | ID: mdl-35544204

ABSTRACT

Many science, technology, engineering, and math (STEM) community college students do not complete their degree, and these students are more likely to be women or in historically excluded racial or ethnic groups. In introductory courses, low grades can trigger this exodus. Implementation of high-impact study strategies could lead to increased academic performance and retention. The examination of study strategies rarely occurs at the community college level, even though community colleges educate approximately half of all STEM students in the United States who earn a bachelor's degree. To fill this research gap, we studied students in two biology courses at a Hispanic-serving community college. Students were asked their most commonly used study strategies at the start and end of the semester. They were given a presentation on study skills toward the beginning of the semester and asked to self-assess their study strategies for each exam. We observed a significantly higher course grade for students who reported spacing their studying and creating drawings when controlling for demographic factors, and usage of these strategies increased by the end of the semester. We conclude that high-impact study strategies can be taught to students in community college biology courses and result in higher course performance.


Subject(s)
Curriculum , Students , Biology/education , Engineering/education , Female , Humans , Male , United States , Universities
3.
Article in English | MEDLINE | ID: mdl-34594438

ABSTRACT

Biology education research (BER) is a recently emerging field mainly focused on the learning and teaching of biology in postsecondary education. As BER continues to grow, exploring what goals, questions, and scholarship the field encompasses will provide an opportunity for the community to reflect on what new lines of inquiry could be pursued in the future. There have been top-down approaches at characterizing BER, such as aims and scope provided by professional societies or peer-reviewed journals, and literature analyses with evidence for current and historical research trends. However, there have not been previous attempts with a bottom-up approach at characterizing BER by directly surveying practitioners and scholars in the field. Here, we share survey results that asked participants at the Society for the Advancement of Biology Education Research (SABER) annual meeting what they perceive as current scholarship in BER as well as what areas of inquiry in the field that they would like to see pursued in the future. These survey responses provide us with information directly from BER practitioners and scholars, and we invite colleagues to reflect on how we can collectively and collaboratively continue to promote BER as a field.

4.
PLoS One ; 15(1): e0227633, 2020.
Article in English | MEDLINE | ID: mdl-31929599

ABSTRACT

Teaching faculty are a potential mechanism to generate positive change in undergraduate STEM education. One such type of faculty is the Lecturer with Potential Security of Employment (L(P)SOE), a tenure-track faculty line within the University of California (UC) system. As a foundation for future studies, we sought to characterize individuals in the L(P)SOE position in terms of their background training, job expectations, and resources available for their success. Data were collected through an online survey completed by over 80% of STEM L(P)SOEs across the UC system, as well as interviews with over 20 deans and chairs in STEM departments at three UC campuses. From this work, we found that the majority of current L(P)SOEs were formally trained within their disciplines and not in an education field; however, they possessed substantial education experience, such as classroom teaching or participation in professional development opportunities. Expectations for time spent on teaching, research, and service are aligned between individuals within varying ranks of the L(P)SOE faculty and between L(P)SOEs and administrators. L(P)SOEs and administrators are also in agreement about what constitutes acceptable professional development activities. Interestingly, we identified differences that may reflect changes in the position over time, including increased start-up funds for more recently hired L(P)SOE faculty and a differing perspective on the role of discipline-based education research and scholarly activities between non-tenured and more senior L(P)SOEs. Overall, these data provide a snapshot of the L(P)SOE position that will aid in future work to identify the potential institutional impact of these individuals.


Subject(s)
Administrative Personnel , Employment , Faculty , Professional Role , Teaching , Universities , Administrative Personnel/psychology , California , Engineering , Faculty/psychology , Female , Humans , Male , Medicine , Professional Role/psychology , Research , Science , Surveys and Questionnaires , Technology
5.
PLoS One ; 14(3): e0213827, 2019.
Article in English | MEDLINE | ID: mdl-30901339

ABSTRACT

During the past few decades, there has been a nationwide push to improve performance and persistence outcomes for STEM undergraduates. As part of this effort, recent research has emphasized the need for focus on not only improving the delivery of course content, but also addressing the social-psychological needs of students. One promising intervention type that has been proposed as a multifaceted way to address both cognitive and social-psychological aspects of the learning process is the learning community. Learning communities provide students with opportunities to build a strong support system in college and are generally associated with increased student engagement and integration with campus systems and cultures. In this study, we examine the impact of a learning community intervention for first-year biological sciences majors, the Enhanced Academic Success Experience (EASE) program. Incoming freshmen are assigned to EASE based on their SAT (or ACT equivalent) Math score, a metric demonstrated to be a key predictor of student success in the program. We find that enrollment in EASE is correlated with higher STEM course grades; an increase of 0.25 (on a 0-4 point scale) in cumulative first-year GPA; and gains in non-academic outcomes, such as measures of sense of belonging and academic integration. Further, these outcomes are more pronounced for particular subgroup populations. For example, whereas surveyed male students seemed to benefit academically from participating in a learning community, female students reported a greater sense of belonging in regard to the biological sciences major and reported higher values for behavioral indicators of academic integration. Lastly, we find that the EASE program is positively correlated with students' intention to stay in the biological sciences major. And, among the three race-oriented groups, this impact is most pronounced for under-represented students. In light of these findings, we discuss the potential of discipline-specific learning community programs to improve academic outcomes for students most at risk of leaving STEM majors, such as students underprepared for college level coursework.


Subject(s)
Achievement , Health Education , Learning , Students/statistics & numerical data , Universities/standards , Female , Humans , Male
6.
CBE Life Sci Educ ; 18(1): ar9, 2019 03.
Article in English | MEDLINE | ID: mdl-30821603

ABSTRACT

Biology education research (BER) is a growing field, as evidenced by the increasing number of publications in CBE-Life Sciences Education ( LSE) and expanding participation at the Society for the Advancement of Biology Education Research (SABER) annual meetings. To facilitate an introspective and reflective discussion on how research within LSE and at SABER has matured, we conducted a content analysis of LSE research articles ( n = 339, from 2002 to 2015) and SABER abstracts ( n = 652, from 2011 to 2015) to examine three related intraresearch parameters: research questions, study contexts, and methodologies. Qualitative data analysis took a combination of deductive and inductive approaches, followed by statistical analyses to determine the correlations among different parameters. We identified existing research questions, study contexts, and methodologies in LSE articles and SABER abstracts and then compared and contrasted these parameters between the two data sources. LSE articles were most commonly guided by descriptive research questions, whereas SABER abstracts were most commonly guided by causal research questions. Research published in LSE and presented at SABER both prioritize undergraduate classrooms as the study context and quantitative methodologies. In this paper, we examine these research trends longitudinally and discuss implications for the future of BER as a scholarly field.


Subject(s)
Biological Science Disciplines/education , Biology/education , Research/education , Female , Humans , Longitudinal Studies , Male , Publications , Societies, Scientific , Students
7.
Biochem Mol Biol Educ ; 47(3): 296-302, 2019 05.
Article in English | MEDLINE | ID: mdl-30844134

ABSTRACT

Grades in undergraduate science, technology, engineering, and mathematics (STEM) courses are distributed under the assumption that high-performing students have a strong understanding of the material. Similarly, the STEM education literature often presents exam performance as equivalent to understanding. Despite these assumptions, we have little knowledge regarding student thinking in relation to exam scores. To investigate this relationship, we asked undergraduate students to complete a series of written and verbal tasks. Twenty-two participants were presented with biology questions and were instructed to write exam-like responses along with their thought process. More than half of the participants then took part in retrospective interviews. We graded the exam-like responses to award a performance score and coded the entirety of participants' writing for their understanding. We found a discrepancy between performance and understanding for over one quarter of our data. Furthermore, interviews allowed for a more complete picture of participant understanding than written responses. These results contribute to calls for re-evaluating our course assessments and for questioning the understanding those assessments value. © 2019 International Union of Biochemistry and Molecular Biology, 47(3):296-302, 2019.


Subject(s)
Comprehension , Educational Measurement , Mathematics/education , Science/education , Female , Humans , Male , Students
8.
PLoS One ; 13(7): e0200767, 2018.
Article in English | MEDLINE | ID: mdl-30063744

ABSTRACT

With the nationwide emphasis on improving outcomes for STEM undergraduates, it is important that we not only focus on modifying classroom instruction, but also provide students with the tools to maximize their independent learning time. There has been considerable work in laboratory settings examining two beneficial practices for enhancing learning: spacing and self-testing. In the current study, we examine biology students' study practices, particularly in the context of these two behaviors. We specifically investigate whether a light-touch study skills intervention focused on encouraging spacing and self-testing practices impacted their utilization. Based on pre- and post-course surveys, we found that students report utilizing both beneficial and ineffective study practices and confirm that usage of spacing and self-testing correlates with a higher course grade. We also found that students in the section of the course which received the study skills intervention were more likely to report continued use or adoption of spacing and self-testing compared to students in control sections without the intervention. Surprisingly, we found that underrepresented minorities (URMs) under-utilize self-testing, and that our intervention helped to partially ameliorate this gap. Additionally, we found that URMs who reported self-testing earned similar course grades compared to non-URMs who also self-tested, but that there was a much larger drop in performance for URMs who did not self-test relative to non-URMs who also did not self-test. Overall, we would encourage instructors to dedicate class time towards discussing the merits of beneficial study practices, especially for students that have historically underperformed in STEM disciplines.


Subject(s)
Biology/education , Learning , Mathematics/education , Technology/education , Adolescent , Computer-Assisted Instruction , Curriculum , Female , Humans , Male , Minority Groups , Students , Young Adult
9.
CBE Life Sci Educ ; 16(1)2017.
Article in English | MEDLINE | ID: mdl-28232587

ABSTRACT

Despite the ubiquity of prerequisites in undergraduate science, technology, engineering, and mathematics curricula, there has been minimal effort to assess their value in a data-driven manner. Using both quantitative and qualitative data, we examined the impact of prerequisites in the context of a microbiology lecture and lab course pairing. Through interviews and an online survey, students highlighted a number of positive attributes of prerequisites, including their role in knowledge acquisition, along with negative impacts, such as perhaps needlessly increasing time to degree and adding to the cost of education. We also identified a number of reasons why individuals do or do not enroll in prerequisite courses, many of which were not related to student learning. In our particular curriculum, students did not believe the microbiology lecture course impacted success in the lab, which agrees with our analysis of lab course performance using a previously established "familiarity" scale. These conclusions highlight the importance of soliciting and analyzing student feedback, and triangulating these data with quantitative performance metrics to assess the state of science, technology, engineering, and mathematics curricula.


Subject(s)
Curriculum/standards , Educational Measurement/methods , Students/psychology , Achievement , Engineering , Humans , Mathematics , Problem-Based Learning
10.
J Microbiol Biol Educ ; 17(2): 261-8, 2016 May.
Article in English | MEDLINE | ID: mdl-27158307

ABSTRACT

Providing students with authentic research opportunities has been shown to enhance learning and increase retention in STEM majors. Accordingly, we have developed a novel microbiology lab module, which focuses on the molecular mechanisms of evolution in E. coli, by examining the growth advantage in stationary phase (GASP) phenotype. The GASP phenotype is demonstrated by growing cells into long-term stationary phase (LTSP) and then competing them against un-aged cells in a fresh culture. This module includes learning goals related to strengthening practical laboratory skills and improving student understanding of evolution. In addition, the students generate novel data regarding the effects of different environmental stresses on GASP and the relationship between evolution, genotypic change, mutation frequency, and cell stress. Pairs of students are provided with the experimental background, select a specific aspect of the growth medium to modify, and generate a hypothesis regarding how this alteration will impact the GASP phenotype. From this module, we have demonstrated that students are able to achieve the established learning goals and have produced data that has furthered our understanding of the GASP phenotype. Journal of Microbiology & Biology Education.

11.
PLoS One ; 11(1): e0148051, 2016.
Article in English | MEDLINE | ID: mdl-26824700

ABSTRACT

Prerequisites are embedded in most STEM curricula. However, the assumption that the content presented in these courses will improve learning in later courses has not been verified. Because a direct comparison of performance between students with and without required prerequisites is logistically difficult to arrange in a randomized fashion, we developed a novel familiarity scale, and used this to determine whether concepts introduced in a prerequisite course improved student learning in a later course (in two biology disciplines). Exam questions in the latter courses were classified into three categories, based on the degree to which the tested concept had been taught in the prerequisite course. If content familiarity mattered, it would be expected that exam scores on topics covered in the prerequisite would be higher than scores on novel topics. We found this to be partially true for "Very Familiar" questions (concepts covered in depth in the prerequisite). However, scores for concepts only briefly discussed in the prerequisite ("Familiar") were indistinguishable from performance on topics that were "Not Familiar" (concepts only taught in the later course). These results imply that merely "covering" topics in a prerequisite course does not result in improved future performance, and that some topics may be able to removed from a course thereby freeing up class time. Our results may therefore support the implementation of student-centered teaching methods such as active learning, as the time-intensive nature of active learning has been cited as a barrier to its adoption. In addition, we propose that our familiarity system could be broadly utilized to aid in the assessment of the effectiveness of prerequisites.


Subject(s)
Biology/education , Problem-Based Learning/methods , Recognition, Psychology , Students/psychology , Adolescent , Biology/methods , Curriculum , Educational Measurement , Female , Humans , Male , Young Adult
12.
CBE Life Sci Educ ; 14(2)2015.
Article in English | MEDLINE | ID: mdl-25828402

ABSTRACT

Undergraduate biology education is often viewed as being focused on memorization rather than development of students' critical-thinking abilities. We speculated that open-note testing would be an easily implemented change that would emphasize higher-order thinking. As open-note testing is not commonly used in the biological sciences and the literature on its effects in biology education is sparse, we performed a comprehensive analysis of this intervention on a primary literature-based exam across three large-enrollment laboratory courses. Although students believed open-note testing would impact exam scores, we found no effect on performance, either overall or on questions of nearly all Bloom's levels. Open-note testing also produced no advantage when examined under a variety of parameters, including research experience, grade point average, course grade, prior exposure to primary literature-focused laboratory courses, or gender. Interestingly, we did observe small differences in open- and closed-note exam performance and perception for students who experienced open-note exams for an entire quarter. This implies that student preparation or in-test behavior can be altered by exposure to open-note testing conditions in a single course and that -increased experience may be necessary to truly understand the impact of this intervention.


Subject(s)
Biology/education , Educational Measurement , Perception , Female , Humans , Male , Regression Analysis , Students
13.
J Microbiol Biol Educ ; 16(2): 223-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26753030

ABSTRACT

In an effort to improve and assess student learning, there has been a push to increase the incorporation of discovery-driven modules and those that contain real-world relevance into laboratory curricula. To further this effort, we have developed, implemented, and assessed an undergraduate microbiology laboratory experiment that requires students to use the scientific method while brewing beer. The experiment allows students to brew their own beer and characterize it based on taste, alcohol content, calorie content, pH, and standard reference method. In addition, we assessed whether students were capable of achieving the module learning objectives through a pre-/posttest, student self-evaluation, exam-embedded questions, and an associated worksheet. These objectives included describing the role of the brewing ingredients and predicting how altering the ingredients would affect the characteristics of the beer, amongst others. By completing this experimental module, students accomplished the module objectives, had greater interest in brewing, and were more likely to view beer in scientific terms. Journal of Microbiology & Biology Education.

14.
CBE Life Sci Educ ; 13(4): 677-86, 2014.
Article in English | MEDLINE | ID: mdl-25452490

ABSTRACT

Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent training our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In this module, instructors conduct classroom discussions that dissect a paper as researchers do. While previous work has identified classroom interventions that improve primary literature comprehension within a single course, our goal was to determine whether including a scientific paper module in our classes could produce long-term benefits. On the basis of performance in an assessment exam, we found that our module resulted in longitudinal gains, including increased comprehension and critical-thinking abilities in subsequent lab courses. These learning gains were specific to courses utilizing our module, as no longitudinal gains were seen in students who had taken other upper-division labs that lacked extensive primary literature discussion. In addition, we assessed whether performance on our assessment correlated with a variety of factors, including grade point average, course performance, research background, and self-reported confidence in understanding of the article. Furthermore, all of the study conclusions are independent of biology disciplines, as we observe similar trends within each course.


Subject(s)
Biology/education , Curriculum , Educational Measurement , Reading , Communication , Models, Educational , Periodicals as Topic/standards , Regression Analysis , Universities
15.
J Microbiol Biol Educ ; 14(2): 230-7, 2013.
Article in English | MEDLINE | ID: mdl-24358387

ABSTRACT

Discovery-driven experiments in undergraduate laboratory courses have been shown to increase student learning and critical thinking abilities. To this end, a lab module involving worm capture by a nematophagous fungus was developed. The goals of this module are to enhance scientific understanding of the regulation of worm capture by soil-dwelling fungi and for students to attain a set of established learning goals, including the ability to develop a testable hypothesis and search for primary literature for data analysis, among others. Students in a ten-week majors lab course completed the lab module and generated novel data as well as data that agrees with the published literature. In addition, learning gains were achieved as seen through a pre-module and post-module test, student self-assessment, class exam, and lab report. Overall, this lab module enables students to become active participants in the scientific method while contributing to the understanding of an ecologically relevant model organism.

16.
J Cell Biol ; 190(4): 541-51, 2010 Aug 23.
Article in English | MEDLINE | ID: mdl-20713603

ABSTRACT

The discovery of large supramolecular complexes such as the purinosome suggests that subcellular organization is central to enzyme regulation. A screen of the yeast GFP strain collection to identify proteins that assemble into visible structures identified four novel filament systems comprised of glutamate synthase, guanosine diphosphate-mannose pyrophosphorylase, cytidine triphosphate (CTP) synthase, or subunits of the eIF2/2B translation factor complex. Recruitment of CTP synthase to filaments and foci can be modulated by mutations and regulatory ligands that alter enzyme activity, arguing that the assembly of these structures is related to control of CTP synthase activity. CTP synthase filaments are evolutionarily conserved and are restricted to axons in neurons. This spatial regulation suggests that these filaments have additional functions separate from the regulation of enzyme activity. The identification of four novel filaments greatly expands the number of known intracellular filament networks and has broad implications for our understanding of how cells organize biochemical activities in the cytoplasm.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Carbon-Nitrogen Ligases/chemistry , Carbon-Nitrogen Ligases/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Enzyme Inhibitors/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2B/genetics , Eukaryotic Initiation Factor-2B/metabolism , Neurons/cytology , Neurons/metabolism , Nucleotidyltransferases , Prions/biosynthesis , Protein Conformation , Protein Synthesis Inhibitors/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Staurosporine/metabolism
17.
Mol Cell ; 34(2): 212-22, 2009 Apr 24.
Article in English | MEDLINE | ID: mdl-19394298

ABSTRACT

Quality control pathways such as ER-associated degradation (ERAD) employ a small number of factors to specifically recognize a wide variety of protein substrates. Delineating the mechanisms of substrate selection is a principle goal in studying quality control. The Hrd1p ubiquitin ligase mediates ERAD of numerous misfolded proteins including soluble, lumenal ERAD-L and membrane-anchored ERAD-M substrates. We tested if the Hrd1p multispanning membrane domain was involved in ERAD-M specificity. In this work, we have identified site-directed membrane domain mutants of Hrd1p impaired only for ERAD-M and normal for ERAD-L. Furthermore, other Hrd1p variants were specifically deficient for degradation of individual ERAD-M substrates. Thus, the Hrd1p transmembrane region bears determinants of high specificity in the ERAD-M pathway. From in vitro and interaction studies, we suggest a model in which the Hrd1p membrane domain employs intramembrane residues to evaluate substrate misfolding, leading to selective ubiquitination of appropriate ERAD-M clients.


Subject(s)
Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/enzymology , Ubiquitin-Protein Ligases/physiology , ATP-Binding Cassette Transporters/metabolism , Amino Acid Sequence , Amino Acid Substitution , Binding Sites , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Membrane Transport Proteins , Molecular Sequence Data , Phenotype , Protein Folding , Protein Structure, Tertiary , SEC Translocation Channels , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/physiology , Substrate Specificity/physiology , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
18.
J Biol Chem ; 284(22): 14710-22, 2009 May 29.
Article in English | MEDLINE | ID: mdl-19324879

ABSTRACT

Endoplasmic reticulum (ER)-associated degradation (ERAD) is responsible for the ubiquitin-mediated destruction of both misfolded and normal ER-resident proteins. ERAD substrates must be moved from the ER to the cytoplasm for ubiquitination and proteasomal destruction by a process called retrotranslocation. Many aspects of retrotranslocation are poorly understood, including its generality, the cellular components required, the energetics, and the mechanism of transfer through the ER membrane. To address these questions, we have developed an in vitro assay, using the 8-transmembrane span ER-resident Hmg2p isozyme of HMG-CoA reductase fused to GFP, which undergoes regulated ERAD mediated by the Hrd1p ubiquitin ligase. We have now directly demonstrated in vitro retrotranslocation of full-length, ubiquitinated Hmg2p-GFP to the aqueous phase. Hrd1p was rate-limiting for Hmg2p-GFP retrotranslocation, which required ATP, the AAA-ATPase Cdc48p, and its receptor Ubx2p. In addition, the adaptors Dsk2p and Rad23p, normally implicated in later parts of the pathway, were required. Hmg2p-GFP retrotranslocation did not depend on any of the proposed ER channel candidates. To examine the role of the Hrd1p transmembrane domain as a retrotranslocon, we devised a self-ubiquitinating polytopic substrate (Hmg1-Hrd1p) that undergoes ERAD in the absence of Hrd1p. In vitro retrotranslocation of full-length Hmg1-Hrd1p occurred in the absence of the Hrd1p transmembrane domain, indicating that it did not serve a required channel function. These studies directly demonstrate polytopic membrane protein retrotranslocation during ERAD and delineate avenues for mechanistic understanding of this general process.


Subject(s)
Cell Membrane/enzymology , Hydroxymethylglutaryl CoA Reductases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/enzymology , Ubiquitin-Protein Ligases/metabolism , Adenosine Triphosphate/metabolism , Green Fluorescent Proteins/metabolism , Protein Transport , Recombinant Fusion Proteins/metabolism , Substrate Specificity , Ubiquitination
19.
Yeast ; 23(14-15): 1053-64, 2006.
Article in English | MEDLINE | ID: mdl-17083136

ABSTRACT

Recent studies have identified Derlin-1, a protein that associates with the AAA-ATPase p97 and is implicated in late steps in ER-associated protein degradation (ERAD). Derlin-1 has two Saccharomyces cerevisiae homologues, Der1p and Dfm1p. While Der1p has been studied extensively, little is known about Dfm1p. Accordingly, we investigated the role of Dfm1p in ERAD, ER homeostasis and interactions with the yeast p97 homologue Cdc48p. Dfm1p was not involved in the degradation of a number of Der1-dependent or -independent ERAD substrates, neither was it redundant with either Der1p or Sec61p in ERAD. However, Dfm1p had a role in ER homeostasis, since Dfm1p loss or overexpression could stimulate the unfolded protein response (UPR). Furthermore, Dfm1p interacted both genetically and physically with Cdc48p, the yeast p97 homologue, and this interaction required an eight amino acid sequence found in the C-terminus of Dfm1p that we have termed the SHP box. Our genetic studies are consistent with the lack of a role for Dfm1p in ERAD, but indicate it participates in ER-related Cdc48p actions distinct from retrotranslocation. Finally, sequence analysis indicated that the UPR-related and Cdc48p interaction functions of Dfm1p could be separated, implying this protein probably has numerous actions in the cell. Thus, the interaction between Derlins and p97 is conserved between yeast and mammals, although its function in ERAD is not. Furthermore, Dfm1p interacts with Cdc48p through its SHP boxes, and so defines a new motif for interaction with this widely-employed AAA-ATPase.


Subject(s)
Cell Cycle Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/physiology , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/physiology , Adenosine Triphosphatases , Alleles , Cell Cycle Proteins/genetics , Homeostasis , Humans , Membrane Proteins/genetics , Phylogeny , Protein Folding , Saccharomyces cerevisiae Proteins/metabolism , Valosin Containing Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...