Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 218: 281-292, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31005735

ABSTRACT

The complex crystals of the family of the Tutton's salt have been investigated through the numerous experimental and theoretical studies to understand their physical properties and their potential technological applications. In spite of the more than 60 years of research, there are very few studies about the electronic properties of Tutton's salt. In our present work, we have calculated the stability, electronic properties and the first theoretical study of band structure of the three different crystals of the Tutton's salt, ammonium nickel sulfate hexahydrate ((NH4)2Ni(SO4)2·6H2O), ammonium nickel-copper sulfate hexahydrate ((NH4)2Ni0.5Cu0.5(SO4)2·6H2O) and ammonium copper sulfate hexahydrate ((NH4)2Ni(SO4)2·6H2O) with the help of periodic ab-initio calculations based on density functional theory (DFT). In addition to this, the internal Raman and FTIR modes of the ionic fragments [Ni(H2O)6]2+, [Cu(H2O)6]2+ NH4+ and SO42- of the sample crystals were obtained by employing the ab initio and the orientation of the molecular vibrations of the ionic fragments have been presented in picturized form. Furthermore, the Raman and FTIR spectroscopy of the sample crystals were measured in the range 100-4000 cm-1 and 400-4000 cm-1 respectively, and the internal vibrational modes obtained from experimental measurement have been compared with those obtained from DFT calculations.

2.
RSC Adv ; 9(64): 37526-37536, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-35542274

ABSTRACT

By means of first-principles calculations, we study the structural, electronic and mechanical properties of the newly synthesized boron-oxygen holey framework (Chem. Comm. 2018, 54, 3971). It has a planar structure formed by B3O3 hexagons, which are joined via strong covalent boron-boron bonds. The six B3O3 units are connected with six-fold symmetry exhibiting a large hole with a surface area of 23 Å2, which is ideal for the adsorption of alkalis. For neutral alkalis, we found that the adsorption energy of potassium is 14 and 12 kcal mol-1 larger than those determined for sodium and lithium, respectively. In contrast, for alkali cations, there is a clear preference for lithium over sodium and potassium. With regard to its electronic properties, it is an insulator with an electronic band gap of 5.3 eV, at the HSE level of theory. We further investigate the effect of strain on the band gap and find it a less efficient technique to tune the electronic properties. The wide optical gap of B3O3 can be utilized in ultraviolet (UV) applications, such as UV photodetectors, etc. Additionally, the 2D elastic modulus of B3O3 (53.9 N m-1) is larger than that of Be3N2, silicene, and germanene. Besides, we also report bilayer and graphite-like bulk B3O3 and furthermore, find that the optoelectronic properties of the bilayer can be tuned with an external electric field. The great tunability of optical properties from UV to the visible range offers a vast range of applications in optoelectronics.

3.
ACS Omega ; 3(11): 15821-15828, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-31458230

ABSTRACT

Herein, we have employed first-principles calculations to investigate the interaction between XY dual-doped graphene (DDG) (X = AL, Si, P, S; Y = B, N, O) and sodium/potassium. The introduction of two dopants alters the adsorption energy (AE) of sodium and potassium with respect to perfect graphene by an average of 0.88 and 0.66 eV, respectively. The systems that display the strongest interactions with the two alkalies assayed are SN and SiB DDG. Although the adsorption energy of sodium on graphene is weaker in comparison to that of potassium, the introduction of these dopants significantly reduces this difference. In effect, in some cases, the AE-K and AE-NA differ by less than 0.05 eV. The protrusion of the 3p dopants out of the graphene plane creates a hole where sodium and potassium can easily be intercalated between two layers of dual-doped graphene. The interlayer distances are reduced by less than 0.4 Å after K intercalation, making the process very favorable. Finally, most importantly, this eminent rise in adsorption energies guarantees exceptional storage capacities at the cost of low doping concentration.

4.
ACS Omega ; 3(12): 16416-16423, 2018 Dec 31.
Article in English | MEDLINE | ID: mdl-31458278

ABSTRACT

First-principles density functional theory calculations are performed to study the stability and electronic properties of hydrogenated and fluorinated two-dimensional sp3 boron phosphide (BP) and boron arsenide (BAs). As expected, the phonon dispersion spectrum and phonon density of states of hydrogenated and fluorinated BX (X = P, As) systems are found to be different, which can be attributed to the different masses of hydrogen and fluorine. Hydrogenated BX systems bear larger and indirect band gaps and are found to be different from fluorinated BX systems. These derivatives can be utilized in hydrogen storage applications and ultrafast electronic devices. Finally, we investigated the stability and electronic properties of stacked bilayers of functionalized BP. Interestingly, we found that these systems display strong interlayer interactions, which impart strong stability. In contrast with the electronic properties determined for the fluorinated/hydrogenated monolayers, we found that the electronic properties of these bilayers can finely be tuned to a narrow gap semiconductor, metallic or nearly semimetallic one by selecting a suitable arrangement of layers. Moreover, the nearly linear dispersion of the conduction band edge and the heavy-, light-hole bands are the interesting characteristics. Furthermore, the exceptional values of effective masses assure the fast electronic transport, making this material very attractive to construct electronic devices.

5.
Chemphyschem ; 18(14): 1864-1873, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28440903

ABSTRACT

The structure, stability, electronic properties and chemical reactivity of X/B/N triple-doped graphene (TDG) systems (X=Al, Si, P, S) are investigated by means of periodic density functional calculations. In the studied TDGs the dopant atoms prefer to be bonded to one another instead of separated. In general, the XNB pattern is preferred, with the exception of sulfur, which favors the SBN motif. The introduction of a third dopant results in a negligible decrease of the cohesive energies with respect to the dual-doped graphene (DDG) counterparts. Thus, it is expect that these systems can be prepared soon. For SiNB TDG, the introduction of the B dopant reduces the gap opening at the K point and restores the Dirac cones that are destroyed in SiN DDG. On the contrary, for PNB TDG, the bandgap is increased with respect to PN DDG, probably because the introduction of B weakens the PN bonding, and thus the electronic structure is rather similar to that of P-doped graphene. Finally, with regard to the reactivity of the TDGs, for AlNB, PNB, and SNB the carbon atoms are more reactive than in their AlN, PN, and SN DDG counterparts. On the contrary, the reactivity of SiNB is lower than that of SiN DDG. Therefore, to increase the reactivity of graphene, Al, P, and S should be combined with BN motifs.

6.
J Mol Model ; 20(7): 2275, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24935107

ABSTRACT

In this paper we study the role played by substituent effects on reactivity and NLO properties of ortho-, meta- and para- dicarba-closo-dodecarborane derivatives at B3LYP/6-31G(d,p) level of theory. In addition correlations with Hammett parameters of the substituents were established. In accordance with obtained results the reactivity properties of derivatives have not been significantly influenced by the isomer type, however the replaced para isomers were the most sensitive to NLO calculations. Moreover, the push-pull para isomers were found to be the most reactive and displayed the largest values of ß tot and dipole moment.

7.
Nano Lett ; 5(2): 349-55, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15794624

ABSTRACT

We report the first detailed fully atomistic molecular dynamics study of the encapsulation of symmetric (C(60)) and asymmetric fullerenes (C(70) and C(78)) inside single-walled carbon nanotubes of different diameters. Different ordered phases have been found and shown to be tube diameter dependent. Rotational structural disorder significantly affecting the volume fraction of the packing was observed for the molecular arrangements of asymmetric fullerenes. Although these effects make more difficult the existence of ordered phases, our results showed that complex packing arrangements (very similar to the ones obtained for C(60)) are also possible for C(70) and C(78). Comparisons with results from continuum and hard-sphere models, ab initio electronic structure calculations, and simulations of the high-resolution transmission electron microscopy images of the obtained fullerene packing phases are also presented.


Subject(s)
Crystallization/methods , Crystallography/methods , Models, Chemical , Models, Molecular , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Computer Simulation , Fullerenes/chemistry , Macromolecular Substances/chemistry , Molecular Conformation , Phase Transition
8.
Nat Mater ; 3(11): 779-82, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15502831

ABSTRACT

A nanoscale understanding of the complex dynamics of large molecules at surfaces is essential for the bottom-up design of molecular nanostructures. Here we show that we can change the diffusion coefficient of the complex organic molecule known as Violet Lander (VL, C(108)H(104)) on Cu(110) by two orders of magnitude by using the STM at low temperatures to switch between two adsorption configurations that differ only in the molecular orientation with respect to the substrate lattice. From an interplay with molecular dynamics simulations, we interpret the results within a lock-and-key model similar to the one driving the recognition between biomolecules: the molecule (key) is immobilized only when its orientation is such that the molecular shape fits the atomic lattice of the surface (lock); otherwise the molecule is highly mobile.


Subject(s)
Microscopy, Scanning Tunneling/methods , Molecular Probes , Organic Chemicals/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...