Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 23265, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853330

ABSTRACT

Trophic sources and pathways supporting early life stages are crucial for survival of forage fishes recruiting around the oligotrophic and unproductive Kuroshio. However, information is limited for the Kuroshio planktonic food web and its trophodynamics because of its high biodiversity. Here, we explore trophic sources and linkages in the Kuroshio plankton community using metabarcoding analysis of gut-content DNA for 22 mesozooplankton groups. The major prey was dinoflagellates and calanoids for omnivorous groups, and calanoids and gelatinous organisms for carnivorous groups. Larvaceans and hydrozoans were the most frequently appeared prey for both omnivores and carnivores, whereas they were minor constituents of the available prey in water samples. Although calanoids overlapped as major prey items for both omnivores and carnivores because they were the most available, contributions from phytoplankton and gelatinous prey differed among taxonomic groups. Further analysis of the metabarcoding data showed that in addition to omnivorous copepods like calanoids, gelatinous groups like larvaceans and hydrozoans were important hubs in the planktonic food web with their multiple trophic linkages to many components. These findings suggest that gelatinous organisms are important as supplementary prey and provide evidence of niche segregation on trophic sources among mesozooplankton groups in the Kuroshio.


Subject(s)
DNA Barcoding, Taxonomic , Phytoplankton/metabolism , Plankton/physiology , Animals , Biomass , China , Computational Biology , Copepoda/genetics , Dinoflagellida/genetics , Ecosystem , Fishes/genetics , Food Chain , High-Throughput Nucleotide Sequencing , Japan , Multivariate Analysis , Water , Zooplankton/genetics
2.
J Nanosci Nanotechnol ; 14(8): 6022-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25936049

ABSTRACT

Silver oxalate, one of the coordination polymer crystals, is a promising synthetic precursor for transformation into Ag nanoparticles without any reducing chemicals via thermal decomposition of the oxalate ions. However, its insoluble nature in solvents has been a great disadvantage, especially for systematic control of crystal growth of the Ag nanoparticles, while such control of inorganic nanoparticles has been generally performed using soluble precursors in homogeneous solutions. In this paper, we document our discovery of water-soluble species from the reaction between the insoluble silver oxalate and N,N-dimethyl-1,3-diaminopropane. The water-soluble species underwent low-temperature thermal decomposition of the oxalate ions at 30 °C with evolution of CO2 to reduce Ag+ to Ag0. Water-dispersible Ag nanoparticles have been successfully synthesized from the water-soluble species in the presence of gelatin via similar thermal decomposition at 100 °C. The gelatin-protected and water-dispersible Ag nanoparticles with a mean diameter of 25.1 nm appeared. In addition, antibacterial activity of the prepared water-dispersible Ag nanoparticles has been preliminarily investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...