Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 269(Pt 2): 131747, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670196

ABSTRACT

Given the broad biological effects of the Hedgehog (Hh) pathway, there is potential clinical value in local application of Hh pathway modulators to restrict pathway activation of target tissues and avoid systemic pathway activation. One option to limit Hh pathway activation is using fibrin hydrogels to deliver pathway modulators directly to tissues of interest, bypassing systemic distribution of the drug. In this study, we loaded the potent Hh pathway agonist, SAG21k, into fibrin hydrogels. We describe the binding between fibrin and SAG21k and achieve sustained release of the drug in vitro. SAG21k-loaded fibrin hydrogels exhibit strong biological activity in vitro, using a pathway-specific reporter cell line. To test in vivo activity, we used a mouse model of facial nerve injury. Application of fibrin hydrogels is a common adjunct to surgical nerve repair, and the Hh pathway is known to play an important role in facial nerve injury and regeneration. Local application of the Hh pathway agonist SAG21k using a fibrin hydrogel applied to the site of facial nerve injury successfully activates the Hh pathway in treated nerve tissue. Importantly, this method appears to avoid systemic pathway activation when Hh-responsive organs are analyzed for transcriptional pathway activation. This method of local tissue Hh pathway agonist administration allows for effective pathway targeting surgically accessible tissues and may have translational value in situations where supranormal pathway activation is therapeutic.


Subject(s)
Facial Nerve Injuries , Fibrin , Hedgehog Proteins , Hydrogels , Signal Transduction , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Hedgehog Proteins/metabolism , Fibrin/chemistry , Mice , Facial Nerve Injuries/drug therapy , Signal Transduction/drug effects , Humans
2.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38596360

ABSTRACT

Ant behavior relies on a collection of natural products, from following trail pheromones during foraging to warding off potential predators. How nervous systems sense these compounds to initiate a behavioral response remains unclear. Here, we used Caenorhabditis elegans chemotaxis assays to investigate how ant compounds are detected by heterospecific nervous systems. We found that C. elegans avoid extracts of the pavement ant ( Tetramorium immigrans ) and either osm-9 or tax-4 ion channels are required for this response. These experiments were conducted in an undergraduate laboratory course, demonstrating that new insights into interspecies interactions can be generated through genuine research experiences in a classroom setting.

SELECTION OF CITATIONS
SEARCH DETAIL
...