Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Breed Sci ; 66(5): 776-789, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28163594

ABSTRACT

A pair of complementary genes, Hwc1-1 at HWC1 locus and Hwc2-1 at HWC2 locus, cause a weakness phenomenon in rice. For this study, we performed haplotype analysis around the HWC2 locus in two core collections comprising 119 accessions. We also examined reactions to phenol and Xanthomonas oryzae pv. oryzae (Xoo) Japanese race I. To elucidate the genetic relations among all accessions, we analyzed their banding patterns of 40 Indel markers covering the rice genome. The classification by Indel markers was almost consistent with that using 4,357 SNPs. The testcross with Hwc1-1 carrier indicated that 37 accessions carried Hwc2-1 allele, whereas 82 carried hwc2-2 allele. Strong association between HWC2 and Ph genes was observed. Based on 14 DNA markers around HWC2 locus and Ph genotype, the 119 accessions were divided into 50 haplotypes. To examine the HWC2 candidate chromosomal region specifically, the 'haplotype group' characterized by the six DNA markers closely linked with HWC2 were analyzed. Hwc2-1 carriers had the same haplotype group. Some hwc2-2 haplotype groups were associated with resistance against the Xoo race. The relation between varietal differentiation and haplotypes around the HWC2 locus was discussed, along with its breeding significance.

2.
Breed Sci ; 64(3): 222-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25320557

ABSTRACT

Two extremely late heading mutants were induced by ion beam irradiation in rice cultivar 'Taichung 65': KGM26 and KGM27. The F2 populations from the cross between the two mutants and Taichung 65 showed clear 3 early: 1 late segregation, suggesting control of late heading by a recessive gene. The genes identified in KGM26 and KGM27 were respectively designated as FLT1 and FLT2. The two genes were mapped using the crosses between the two mutants and an Indica cultivar 'Kasalath'. FLT1 was located on the distal end of the short arm of chromosome 8. FLT2 was located around the centromere of chromosome 9. FLT1 might share the same locus as EHD3 because their chromosomal location is overlapping. FLT2 is inferred to be a new gene because no gene with a comparable effect to that of this gene was mapped near the centromere of chromosome 9. In crosses with Kasalath, homozygotes of late heading mutant genes showed a large variation of days to heading, suggesting that other genes affected late heading mutant genes.

3.
Int J Plant Genomics ; 2012: 649081, 2012.
Article in English | MEDLINE | ID: mdl-22500165

ABSTRACT

MANY POSTZYGOTIC REPRODUCTIVE BARRIER FORMS HAVE BEEN REPORTED IN PLANTS: hybrid weakness, hybrid necrosis, and hybrid chlorosis. In this study, linkage analysis of the genes causing hybrid chlorosis in F(2) generation in rice, HCA1 and HCA2, was performed. HCA1 and HCA2 are located respectively on the distal regions of the short arms of chromosomes 12 and 11. These regions are known to be highly conserved as a duplicated chromosomal segment. The molecular mechanism causing F(2) chlorosis deduced from the location of the two genes was discussed. The possibility of the introgression of the chromosomal segments encompassing HCA1 and/or HCA2 was also discussed from the viewpoint of Indica-Japonica differentiation.

4.
Theor Appl Genet ; 114(8): 1407-15, 2007 May.
Article in English | MEDLINE | ID: mdl-17375279

ABSTRACT

Hybrid weakness is a reproductive barrier that is found in many plant species. In rice, the hybrid weakness caused by two complementary genes, Hwc1 and Hwc2, has been surveyed intensively. However, their gene products and the molecular mechanism that causes hybrid weakness have remained unknown. We performed linkage analyses of Hwc1, narrowed down the area of interest to 60 kb, and identified eight candidate genes. In the F(2) population, in which both Hwc1 and Hwc2 genes were segregated, plants were separable into four classes according to their respective phenotypes: severe type, semi-severe type, F(1) type, and normal type. Severe type plants show such severe symptoms that they could produce only tiny shoot-like structures; they were unable to generate roots. Genetic analyses using closely linked DNA markers of the two genes showed that the symptoms of the F(2) plants were explainable by the genotypes of Hwc1 and Hwc2. Weakness was observed in plants that have both Hwc1 and Hwc2. In Hwc1 homozygote, the symptoms worsened and severe type or semi-severe type plants appeared. Consequently, Hwc1 should have a gene dosage effect and be a semi-dominant gene. The dosage effect of Hwc2 was recognizable, but it was not so severe as that in Hwc1. These results are useful to elucidate the mechanism that causes the hybrid weakness phenomenon and the role of each causal gene in hybrid weakness.


Subject(s)
Alleles , Chromosomes, Plant/genetics , Gene Dosage , Hybridization, Genetic , Oryza/genetics , Physical Chromosome Mapping , Plant Infertility/genetics , Plant Roots/genetics , Plant Shoots/genetics , Reproduction/genetics
5.
Hereditas ; 142(2005): 38-44, 2005 Feb.
Article in English | MEDLINE | ID: mdl-16970610

ABSTRACT

We determined the sequence of ribosomal DNA (rDNA) intergenic spacer (IGS) of foxtail millet isolated in our previous study, and identified subrepeats in the polymorphic region. We also developed a PCR-based method for identifying rDNA types based on sequence information and assessed 153 accessions of foxtail millet. Results were congruent with our previous works. This study provides new findings regarding the geographical distribution of rDNA variants. This new method facilitates analyses of numerous foxtail millet accessions. It is helpful for typing of foxtail millet germplasms and elucidating the evolution of this millet.


Subject(s)
DNA, Intergenic/genetics , DNA, Ribosomal/genetics , Setaria Plant/genetics , Base Sequence , DNA, Intergenic/chemistry , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Plant/isolation & purification , DNA, Ribosomal/chemistry , Molecular Sequence Data , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Repetitive Sequences, Nucleic Acid/genetics , Sequence Alignment , Sequence Analysis, DNA/methods , Setaria Plant/classification , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL