Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2653: 273-285, 2023.
Article in English | MEDLINE | ID: mdl-36995632

ABSTRACT

Cas9-based genome editing is a powerful genetic tool for loci specifically targeted for genome modification. This chapter describes up-to-date protocols using Cas9-based genome editing technology, including vector construction with GoldenBraid assembly, Agrobacterium-mediated soybean transformation, and identification of editing in the genome.


Subject(s)
Gene Editing , Glycine max , Gene Editing/methods , Glycine max/genetics , CRISPR-Cas Systems/genetics , Alleles , Genotype
2.
Phytochemistry ; 200: 113206, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35436478

ABSTRACT

Cannabis sativa is a versatile crop that can be cultivated for fiber, seed, or phytochemicals. To take advantage of this versatility and the potential of Cannabis as a feedstock for the bioeconomy, genomics-enabled breeding programs must be strengthened and expanded. This work contributes to the foundation for such by investigating the phytochemistry and genomics of feral Cannabis populations collected from seventeen counties across the climate gradient of Nebraska. Flower tissue from male and female plants (28 total) was studied using (i) gas chromatography-mass spectrometry to assess cannabinoid profiles and (ii) RNA sequencing to determine transcript abundances. Both male and female flower tissues produced cannabinoids, and, though the compounds were more abundant in female flower tissue, the primary cannabinoid in both was usually cannabidiol. The expression of genes that mediate early steps on the cannabinoid biosynthetic pathway were upregulated in female relative to male flowers, suggesting that female versus male flower tissue cannabinoid abundance may be controlled at least in part at the transcriptional level. DNA sequencing was used to place feral Cannabis plants from Nebraska into a previously described genomic context, revealing that all the plants studied here are much more similar to previously characterized hemp-type Cannabis plants than to drug-type Cannabis plants, at least at the genetic level. This work provides foundational phytochemical knowledge and a large set of high-quality single nucleotide polymorphism markers for future studies of feral Nebraska Cannabis.


Subject(s)
Cannabinoids , Cannabis , Hallucinogens , Cannabinoids/analysis , Cannabinoids/chemistry , Cannabis/chemistry , Cannabis/genetics , Genetic Variation , Nebraska , Phytochemicals/analysis , Plant Breeding
3.
Plant Biotechnol J ; 18(9): 1955-1968, 2020 09.
Article in English | MEDLINE | ID: mdl-32031318

ABSTRACT

Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced transcript level of LATERAL ROOT DENSITY (LRD) gene under limited water in the Agropyron translocation line confers it the ability to maintain root growth. The Agropyron allele of LRD is down-regulated in response to water limitation in contrast with the wheat LRD allele, which is up-regulated by water deficit stress. Suppression of LRD expression in wheat RNAi plants confers the ability to maintain root growth under water limitation. We show that exogenous gibberellic acid (GA) promotes lateral root growth and present evidence for the role of GA in mediating the differential regulation of LRD between the common wheat and the Agropyron alleles under water stress. Suppression of LRD also had a positive pleiotropic effect on grain size and number under optimal growth conditions. Collectively, our findings suggest that LRD can be potentially useful for improving wheat response to water stress and altering yield components.


Subject(s)
Agropyron , Triticum , Agropyron/genetics , Dehydration , Droughts , Genes, Plant , Humans , Triticum/genetics , Water
4.
Genes (Basel) ; 10(8)2019 07 25.
Article in English | MEDLINE | ID: mdl-31349565

ABSTRACT

Solanaceae have played an important role in elucidating how flower color is specified by the flavonoid biosynthesis pathway (FBP), which produces anthocyanins and other secondary metabolites. With well-established reverse genetics tools and rich genomic resources, Solanaceae provide a robust framework to examine the diversification of this well-studied pathway over short evolutionary timescales and to evaluate the predictability of genetic perturbation on pathway flux. Genomes of eight Solanaceae species, nine related asterids, and four rosids were mined to evaluate variation in copy number of the suite of FBP enzymes involved in anthocyanin biosynthesis. Comparison of annotation sources indicated that the NCBI annotation pipeline generated more and longer FBP annotations on average than genome-specific annotation pipelines. The pattern of diversification of each enzyme among asterids was assessed by phylogenetic analysis, showing that the CHS superfamily encompasses a large paralogous family of ancient and recent duplicates, whereas other FBP enzymes have diversified via recent duplications in particular lineages. Heterologous expression of a pansy F3'5'H gene in tobacco changed flower color from pink to dark purple, demonstrating that anthocyanin production can be predictably modified using reverse genetics. These results suggest that the Solanaceae FBP could be an ideal system to model genotype-to-phenotype interactions for secondary metabolism.


Subject(s)
Anthocyanins/biosynthesis , Genome, Plant , Secondary Metabolism , Solanaceae/metabolism , Anthocyanins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Solanaceae/genetics
5.
Plant Biotechnol J ; 17(2): 373-385, 2019 02.
Article in English | MEDLINE | ID: mdl-29979490

ABSTRACT

Triterpenes are thirty-carbon compounds derived from the universal five-carbon prenyl precursors isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Normally, triterpenes are synthesized via the mevalonate (MVA) pathway operating in the cytoplasm of eukaryotes where DMAPP is condensed with two IPPs to yield farnesyl diphosphate (FPP), catalyzed by FPP synthase (FPS). Squalene synthase (SQS) condenses two molecules of FPP to generate the symmetrical product squalene, the first committed precursor to sterols and most other triterpenes. In the green algae Botryococcus braunii, two FPP molecules can also be condensed in an asymmetric manner yielding the more highly branched triterpene, botryococcene. Botryococcene is an attractive molecule because of its potential as a biofuel and petrochemical feedstock. Because B. braunii, the only native host for botryococcene biosynthesis, is difficult to grow, there have been efforts to move botryococcene biosynthesis into organisms more amenable to large-scale production. Here, we report the genetic engineering of the model monocot, Brachypodium distachyon, for botryococcene biosynthesis and accumulation. A subcellular targeting strategy was used, directing the enzymes (botryococcene synthase [BS] and FPS) to either the cytosol or the plastid. High titres of botryococcene (>1 mg/g FW in T0 mature plants) were obtained using the cytosolic-targeting strategy. Plastid-targeted BS + FPS lines accumulated botryococcene (albeit in lesser amounts than the cytosolic BS + FPS lines), but they showed a detrimental phenotype dependent on plastid-targeted FPS, and could not proliferate and survive to set seed under phototrophic conditions. These results highlight intriguing differences in isoprenoid metabolism between dicots and monocots.


Subject(s)
Brachypodium/genetics , Plant Proteins/metabolism , Sorghum/genetics , Squalene/metabolism , Triterpenes/metabolism , Brachypodium/metabolism , Chlorophyta/genetics , Chlorophyta/metabolism , Cytosol/metabolism , Farnesyl-Diphosphate Farnesyltransferase/genetics , Farnesyl-Diphosphate Farnesyltransferase/metabolism , Genetic Engineering , Geranyltranstransferase/genetics , Geranyltranstransferase/metabolism , Plant Proteins/genetics , Plastids/metabolism , Sorghum/metabolism
6.
Plant Physiol ; 177(4): 1425-1438, 2018 08.
Article in English | MEDLINE | ID: mdl-29925584

ABSTRACT

Kafirins are the major storage proteins in sorghum (Sorghum bicolor) grains and form protein bodies with poor digestibility. Since kafirins are devoid of the essential amino acid lysine, they also impart poor protein quality to the kernel. The α-kafirins, which make up most of the total kafirins, are largely encoded by the k1C family of highly similar genes. We used a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) gene editing approach to target the k1C genes to create variants with reduced kafirin levels and improved protein quality and digestibility. A single guide RNA was designed to introduce mutations in a conserved region encoding the endoplasmic reticulum signal peptide of α-kafirins. Sequencing of kafirin PCR products revealed extensive edits in 25 of 26 events in one or multiple k1C family members. T1 and T2 seeds showed reduced α-kafirin levels, and selected T2 events showed significantly increased grain protein digestibility and lysine content. Thus, a single consensus single guide RNA carrying target sequence mismatches is sufficient for extensive editing of all k1C genes. The resulting quality improvements can be deployed rapidly for breeding and the generation of transgene-free, improved cultivars of sorghum, a major crop worldwide.


Subject(s)
Gene Editing/methods , Plant Proteins/genetics , Sorghum/genetics , CRISPR-Cas Systems , Digestion , Lysine , Multigene Family , Mutation Rate , Plant Proteins/pharmacokinetics , Plant Proteins, Dietary/genetics , Plant Proteins, Dietary/pharmacokinetics , Plants, Genetically Modified , RNA, Guide, Kinetoplastida , Seeds/genetics , Seeds/metabolism , Sorghum/metabolism
7.
Methods Mol Biol ; 1223: 181-8, 2015.
Article in English | MEDLINE | ID: mdl-25300840

ABSTRACT

Agrobacterium-mediated transformation of sorghum (Sorghum bicolor L. Moench) targeting immature embryo explants is a route to introduce transgenic alleles into the crop. The protocol requires maintenance of quality stock plants under greenhouse conditions for a constant supply of immature embryo explants. This is typically carried out by a regular sowing of seeds, minimal use of pesticides, and monitoring of plants to document pollen dispersal and bagging of heads. The time frame from explant inoculation to establishment of a primary transgenic event in the greenhouse typically ranges from 4 to 6 months. Seed set in the primary transformants is comparable to greenhouse-grown stock plants, with the majority of the transgenic alleles being inherited as a single functional locus.


Subject(s)
Genetic Techniques , Sorghum/genetics , Agriculture/methods , Agrobacterium tumefaciens/genetics , Coculture Techniques , Plants, Genetically Modified , Pollen/genetics , Seeds/genetics , Sorghum/growth & development , Sterilization , Transformation, Bacterial
8.
Plant Physiol ; 162(3): 1359-69, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23677936

ABSTRACT

Zeins, the maize (Zea mays) prolamin storage proteins, accumulate at very high levels in developing endosperm in endoplasmic reticulum membrane-bound protein bodies. Products of the multigene α-zein families and the single-gene γ-zein family are arranged in the central hydrophobic core and the cross-linked protein body periphery, respectively, but little is known of the specific roles of family members in protein body formation. Here, we used RNA interference suppression of different zein subclasses to abolish vitreous endosperm formation through a variety of effects on protein body density, size, and morphology. We showed that the 27-kilodalton (kD) γ-zein controls protein body initiation but is not involved in protein body filling. Conversely, other γ-zein family members function more in protein body expansion and not in protein body initiation. Reduction in both 19- and 22-kD α-zein subfamilies severely restricted protein body expansion but did not induce morphological abnormalities, which result from reduction of only the 22-kD α-zein class. Concomitant reduction of all zein classes resulted in severe reduction in protein body number but normal protein body size and morphology.


Subject(s)
Endosperm/metabolism , Plant Proteins/metabolism , Zea mays/metabolism , Zein/metabolism , Endosperm/genetics , Endosperm/growth & development , Gene Expression Regulation, Plant , Molecular Sequence Data , Multigene Family , Plant Proteins/genetics , Plants, Genetically Modified , RNA Interference , Zea mays/genetics
9.
Plant Cell ; 23(9): 3428-41, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21934144

ABSTRACT

Mitochondrial-plastid interdependence within the plant cell is presumed to be essential, but measurable demonstration of this intimate interaction is difficult. At the level of cellular metabolism, several biosynthetic pathways involve both mitochondrial- and plastid-localized steps. However, at an environmental response level, it is not clear how the two organelles intersect in programmed cellular responses. Here, we provide evidence, using genetic perturbation of the MutS Homolog1 (MSH1) nuclear gene in five plant species, that MSH1 functions within the mitochondrion and plastid to influence organellar genome behavior and plant growth patterns. The mitochondrial form of the protein participates in DNA recombination surveillance, with disruption of the gene resulting in enhanced mitochondrial genome recombination at numerous repeated sequences. The plastid-localized form of the protein interacts with the plastid genome and influences genome stability and plastid development, with its disruption leading to variegation of the plant. These developmental changes include altered patterns of nuclear gene expression. Consistency of plastid and mitochondrial response across both monocot and dicot species indicate that the dual-functioning nature of MSH1 is well conserved. Variegated tissues show changes in redox status together with enhanced plant survival and reproduction under photooxidative light conditions, evidence that the plastid changes triggered in this study comprise an adaptive response to naturally occurring light stress.


Subject(s)
Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Light , Magnoliopsida/radiation effects , Mitochondria/metabolism , MutS DNA Mismatch-Binding Protein/metabolism , Oxidative Stress , DNA, Plant/genetics , Gene Expression Regulation, Plant , Genetic Complementation Test , Genome, Chloroplast , Genome, Mitochondrial , Genomic Instability , Magnoliopsida/genetics , Magnoliopsida/physiology , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction , Plant Leaves/genetics , Plant Leaves/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Plants, Genetically Modified/radiation effects , Quinones/analysis , Recombination, Genetic
10.
Plant Mol Biol ; 75(4-5): 467-79, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21318369

ABSTRACT

Sorghum (Sorghum bicolor (L.) Moench) is an important source for food, feed, and possesses many agronomic attributes attractive for a biofuels feedstock. A warm season crop originating from the semi-arid tropics, sorghum is relatively susceptible to both cold and freezing stress. Enhancing the ability of sorghum to tolerate cold and freezing offers a route to expand the acreage for production, and provides a potential drought avoidance strategy during flowering, an important parameter for protection of yield. Targeted perturbation of the signal transduction pathway, that is triggered by exposure to abiotic stress in plants, has been demonstrated in model systems as an avenue to augment tolerance. Calcium-dependent protein kinases (CDPKs) are key players in a plant's response to environmental assaults. To test the impact of modulating CDPK activity in sorghum as a means to enhanced abiotic stress tolerance, we introduced a constitutively expressed rice CDPK-7 (OsCDPK-7) gene construct. Sorghum transformants carrying this cassette, were not improved in cold or salt stress under the conditions tested. However, a lesion mimic phenotype and up-regulation of a number of pathogen related proteins, along with transcripts linked to photosynthesis were observed. These results demonstrate that modulating the Ca signaling cascade in planta via unregulated enhanced CDPK activity can lead to off-type effects likely due to the broadly integrated nature of these enzymes in signaling.


Subject(s)
Oryza/enzymology , Oryza/genetics , Protein Kinases/genetics , Sorghum/enzymology , Sorghum/genetics , Acclimatization/genetics , Acclimatization/physiology , Amino Acid Sequence , Base Sequence , Calcium Signaling , Cold Climate , DNA, Plant/genetics , Gene Expression , Genes, Plant , Molecular Sequence Data , Phenotype , Plants, Genetically Modified , Protein Kinases/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Stress, Physiological , Transformation, Genetic
11.
J Agric Food Chem ; 59(11): 5830-4, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21133415

ABSTRACT

Herbicide-tolerant crops have been widely and rapidly adopted by farmers in several countries due to enhanced weed control, lower labor and production costs, increased environmental benefits, and gains in profitability. Soon to be introduced transgenic soybean and cotton varieties tolerant to treatments with the herbicide dicamba offer prospects for excellent broadleaf weed control in these broadleaf crops. Because monocots such as maize (Zea mays) can be treated with dicamba only during a limited window of crop development and because crop injury is sometimes observed when conditions are unfavorable, transgenic maize plants have been produced and tested for higher levels of tolerance to treatment with dicamba. Maize plants expressing the gene encoding dicamba monooxygenase (DMO) linked with an upstream chloroplast transit peptide (CTP) display greatly enhanced tolerance to dicamba applied either pre-emergence or postemergence. Comparisons of DMO coupled to CTPs derived from the Rubisco small subunit from either Arabidopsis thaliana or Z. mays showed that both allowed production of transgenic maize plants tolerant to treatment with levels of dicamba (i.e., 27 kg/ha) greatly exceeding the highest recommended rate of 0.56 kg/ha.


Subject(s)
Dicamba/pharmacology , Herbicide Resistance , Herbicides/pharmacology , Plants, Genetically Modified/drug effects , Zea mays/drug effects , Zea mays/genetics , Genetic Engineering , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Zea mays/metabolism
12.
Plant J ; 49(5): 910-23, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17257170

ABSTRACT

Phosphoenolpyruvate carboxylase (PEPC) is a widely distributed metabolic enzyme among plant and prokaryotic species. In vascular plants, the typical PEPC is regulated post-translationally by a complex interplay between opposing metabolite effectors and reversible protein phosphorylation. This phosphorylation event is controlled primarily by the up-/down-regulation of PEPC-kinase (PpcK), an approximately 31-kDa Ser/Thr-kinase. As a sequel to earlier investigations related to PEPC phosphorylation in N(2)-fixing nodules of Glycine max, we now present a detailed molecular analysis of the PpcK multigene family in nodulated soybeans. Although the GmPpcK1-4 transcripts are all expressed throughout nodule development, only the nearly identical GmPpcK2/3 homologs are nodule-enhanced and up-/down-regulated in vivo by photosynthate supply from the shoots. In contrast, GmPpcK1 is a 'housekeeping' gene, and GmPpcK4 is a highly divergent member, distantly removed from the legume PpcK subfamily. Real-time qRT-PCR analysis indicates that GmPpcK2/3 are overwhelmingly the dominant PpcKs expressed and up-/down-regulated throughout nodule development, mirroring the expression properties of nodule-enhanced PEPC (GmPpc7). In situ RT-PCR investigation of the spatial localization of the GmPpcK1-4 and GmPpc7 transcripts in mature nodules is entirely consistent with this view. Complementary histochemical and related RNA gel-blot findings with nodulated, GmPpcK1/3 promoter::GUS-expressing T(2) plants provide direct experimental evidence that (i) PpcK gene expression is controlled primarily at the transcriptional level; and (ii) the contrasting expression properties of GmPpcK1/3 are conferred largely by regulatory element(s) within the approximately 1.4-kb 5'-upstream region. As a result of our multifaceted analyses of GmPpcK1-4, GmPpc7 and PEPC-phosphorylation in the soybean nodule, it is proposed that the GmPpcK2/3 homologs and GmPpc7 together comprise the key molecular 'downstream players' in this regulatory phosphorylation system within the mature nodule's central zone.


Subject(s)
Gene Expression Regulation, Plant , Glycine max/enzymology , Protein Serine-Threonine Kinases/genetics , Root Nodules, Plant/genetics , Soybean Proteins/genetics , Blotting, Northern , Gene Expression Profiling , Genes, Reporter , Molecular Sequence Data , Phosphoenolpyruvate Carboxylase/metabolism , Phylogeny , Plants, Genetically Modified , Glycine max/genetics , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...