Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Oral Investig ; 25(5): 3095-3103, 2021 May.
Article in English | MEDLINE | ID: mdl-33047204

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effects of nanohydroxyapatite (nHAp) particles on the morphological, chemical, physical, and biological properties of chitosan electrospun nanofibers. MATERIALS AND METHODS: nHAp particles with a 1.67 Ca/P ratio were synthesized via the aqueous precipitation method, incorporated into chitosan polymer solution (0.5 wt%), and electrospun into nHAp-loaded fibers (ChHa fibers). Neat chitosan fibers (nHAp-free, Ch fibers) were used as the control. The electrospun fiber mats were characterized using morphological, topographical, chemical, thermal, and a range of biological (antibacterial, antibiofilm, cell viability, and alkaline phosphatase [ALP] activity) analyses. Data were analyzed using ANOVA and Tukey's test (α = 0.05). RESULTS: ChHa fibers demonstrated a bead-like morphology, with thinner (331 ± 110 nm) and smoother (Ra = 2.9 ± 0.3 µm) distribution as compared to the control fibers. Despite showing similar cell viability and ALP activity to Ch fibers, the ChHa fibers demonstrated greater antibacterial potential against most tested bacteria (except for P. intermedia), and higher antibiofilm activity against P. gingivalis biofilm. CONCLUSIONS: The incorporation of nHAp particles did not jeopardize the overall morphology, topography, physical, and biological characteristics of the chitosan nanofibers. CLINICAL RELEVANCE: The combination of nHAp particles with chitosan can be used to engineer bioactive, electrospun composite nanofibers with potential applications in regenerative dentistry.


Subject(s)
Chitosan , Nanofibers , Chitosan/pharmacology , Durapatite , Polymers
2.
J Mech Behav Biomed Mater ; 112: 104072, 2020 12.
Article in English | MEDLINE | ID: mdl-32911228

ABSTRACT

This study aimed to synthesize and characterize non-woven acrylonitrile butadiene styrene (ABS), polyamide-6 (P6), and polystyrene (PS) nanofibers, and evaluate their effects on the flexural strength and fracture resistance of fiber-modified polymethyl methacrylate (PMMA) resin. ABS, P6, and PS polymer solutions were prepared and electrospun into fiber mats, which were characterized by means of morphological, chemical, physical, and mechanical analyses. The fiber mats were then used to modify a thermally-activated PMMA resin, resulting in four testing groups: one unmodified group (control) and three fiber-modified groups incorporated with ABS, P6, or PS fiber mats. Flexural strength, work of fracture, and fractographic analysis were performed for all groups. Data were analyzed using Kruskal-Wallis or ANOVA tests (α = 0.05). The fiber diameter decreased, respectively, as follows: ABS > P6 > PS. Only the P6 fiber mats demonstrated a crystalline structure. Wettability was similar among the distinct fiber mats, although tensile strength was significantly greater for P6, followed by ABS, and then PS mats. Flexural strength of the fiber-modified PMMA resins was similar to the control, except for the weaker P6-based material. The work of fracture seemed to be greater and lower when the P6 and PS fibers were used, respectively. The fiber-modified groups exhibited a rougher pattern in the fractured surfaces when compared to the control, which may suggest that the presence of fibers deviates the direction of crack propagation, making the fracture mechanism of the PMMA resin more dynamic. While the neat PMMA showed a typical brittle response, the fiber-modified PMMA resins demonstrated a ductile response, combined with voids, suggesting large shear deformation during fracture. Altogether, despite the lack of direct reinforcement in the mechanical strength of the PMMA resin, the use of electrospun fibers showed promising application for the improvement of fracture behavior of PMMA resins, turning them into more compliant materials, although this effect may depend on the fiber composition.


Subject(s)
Nanofibers , Polymethyl Methacrylate , Acrylic Resins , Denture Bases , Flexural Strength , Materials Testing , Pliability , Polymers , Stress, Mechanical , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...