Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiologyopen ; 10(2): e1176, 2021 03.
Article in English | MEDLINE | ID: mdl-33970532

ABSTRACT

Nutrients including glucose, nitrogen, sulfur, zinc, and iron are involved in the regulation of chronological lifespan (CLS) of yeast, which serves as a model of the lifespan of differentiated cells of higher organisms. Herein, we show that magnesium (Mg2+ ) depletion extends CLS of the fission yeast Schizosaccharomyces pombe through a mechanism involving the Ecl1 gene family. We discovered that ecl1+ expression, which extends CLS, responds to Mg2+ depletion. Therefore, we investigated the underlying intracellular responses. In amino acid auxotrophic strains, Mg2+ depletion robustly induces ecl1+ expression through the activation of the general amino acid control (GAAC) pathway-the equivalent of the amino acid response of mammals. Polysome analysis indicated that the expression of Ecl1 family genes was required for regulating ribosome amount when cells were starved, suggesting that Ecl1 family gene products control the abundance of ribosomes, which contributes to longevity through the activation of the evolutionarily conserved GAAC pathway. The present study extends our understanding of the cellular response to Mg2+ depletion and its influence on the mechanism controlling longevity.


Subject(s)
Amino Acids/metabolism , Magnesium/metabolism , Nuclear Proteins/physiology , Ribosomes/metabolism , Schizosaccharomyces pombe Proteins/physiology , Schizosaccharomyces/physiology , Cell Cycle , Gene Expression Regulation, Fungal , Genes, Fungal , Longevity , Nutrients/metabolism
3.
J Biol Chem ; 294(49): 18909-18922, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31649035

ABSTRACT

Cyanobacteriochromes (CBCRs) are phytochrome-related photosensors with diverse spectral sensitivities spanning the entire visible spectrum. They covalently bind bilin chromophores via conserved cysteine residues and undergo 15Z/15E bilin photoisomerization upon light illumination. CBCR subfamilies absorbing violet-blue light use an additional cysteine residue to form a second bilin-thiol adduct in a two-Cys photocycle. However, the process of second thiol adduct formation is incompletely understood, especially the involvement of the bilin protonation state. Here, we focused on the Oscil6304_2705 protein from the cyanobacterium Oscillatoria acuminata PCC 6304, which photoconverts between a blue-absorbing 15Z state ( 15Z Pb) and orange-absorbing 15E state ( 15E Po). pH titration analysis revealed that 15Z Pb was stable over a wide pH range, suggesting that bilin protonation is stabilized by a second thiol adduct. As revealed by resonance Raman spectroscopy, 15E Po harbored protonated bilin at both acidic and neutral pH, but readily converted to a deprotonated green-absorbing 15Z state ( 15Z Pg) at alkaline pH. Site-directed mutagenesis revealed that the conserved Asp-71 and His-102 residues are required for second thiol adduct formation in 15Z Pb and bilin protonation in 15E Po, respectively. An Oscil6304_2705 variant lacking the second cysteine residue, Cys-73, photoconverted between deprotonated 15Z Pg and protonated 15E Pr, similarly to the protochromic photocycle of the green/red CBCR subfamily. Time-resolved spectroscopy revealed 15Z Pg formation as an intermediate in the 15E Pr-to- 15Z Pg conversion with a significant solvent-isotope effect, suggesting the sequential occurrence of 15EP-to-15Z photoisomerization, deprotonation, and second thiol adduct formation. Our findings uncover the details of protochromic absorption changes underlying the two-Cys photocycle of violet-blue-absorbing CBCR subfamilies.


Subject(s)
Cysteine/metabolism , Phytochrome/metabolism , Bile Pigments/metabolism , Hydrogen-Ion Concentration , Oscillatoria/metabolism
4.
Mol Genet Genomics ; 294(6): 1499-1509, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31456006

ABSTRACT

Many studies show that lifespans of various model organisms can be extended by limiting the quantities of nutrients that are necessary for proliferation. In Schizosaccharomyces pombe, the Ecl1 family genes have been associated with lifespan control and are necessary for cell responses to nutrient depletion, but their functions and mechanisms of action remain uncharacterized. Herein, we show that leucine depletion extends the chronological lifespan (CLS) of leucine-auxotrophic cells. Furthermore, depletion of leucine extended CLS and caused cell miniaturization and cell cycle arrest at the G1 phase, and all of these processes depended on Ecl1 family genes. Although depletion of leucine raises the expression of ecl1+ by about 100-fold in leucine-auxotrophic cells, these conditions did not affect ecl1+ expression in leucine-auxotrophic fil1 mutants that were isolated in deletion set screens using 79 mutants disrupting a transcription factor. Fil1 is a GATA-type zinc finger transcription factor that reportedly binds directly to the upstream regions of ecl1+ and ecl2+. Accordingly, we suggest that Ecl1 family genes are induced in response to environmental stresses, such as oxidative stress and heat stress, or by nutritional depletion of nitrogen or sulfur sources or the amino acid leucine. We also propose that these genes play important roles in the maintenance of cell survival until conditions that favor proliferation are restored.


Subject(s)
Gene Expression Regulation, Fungal/physiology , Leucine/physiology , Nuclear Proteins/biosynthesis , Schizosaccharomyces pombe Proteins/physiology , Schizosaccharomyces/physiology , Transcription Factors/physiology , G1 Phase Cell Cycle Checkpoints , Multigene Family , Nitrogen/physiology , Nuclear Proteins/genetics , Schizosaccharomyces/cytology , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/biosynthesis , Schizosaccharomyces pombe Proteins/genetics , Transcription Factors/genetics
5.
J Pept Sci ; 23(3): 252-260, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28185358

ABSTRACT

Previously, we showed that the antimicrobial cationic and amphipathic octadecapeptide AmyI-1-18 from rice α-amylase (AmyI-1) inhibited the endotoxic activity of lipopolysaccharide (LPS) from Escherichia coli. In addition, we demonstrated that several AmyI-1-18 analogs containing arginine or leucine substitutions, which were designed on the basis of the helical wheel projection of AmyI-1-18, exhibited higher antimicrobial activity against human pathogenic microorganisms than AmyI-1-18. In the present study, anti-inflammatory (anti-endotoxic) activities of five AmyI-1-18 analogs containing arginine or leucine substitutions were investigated. Two single arginine-substituted and two single leucine-substituted AmyI-1-18 analogs inhibited the production of LPS-induced nitric oxide in mouse macrophages (RAW264) more effectively than AmyI-1-18. These data indicate that enhanced cationic and hydrophobic properties of AmyI-1-18 are associated with improved anti-endotoxic activity. In subsequent chromogenic Limulus amebocyte lysate assays, 50% inhibitory concentrations (IC50 ) of the three AmyI-1-18 analogs (G12R, D15R, and E9L) were 0.11-0.13 µm, indicating higher anti-endotoxic activity than that of AmyI-1-18 (IC50, 0.22 µm), and specific LPS binding activity. In agreement, surface plasmon resonance analyses confirmed direct LPS binding of three AmyI-1-18 analogs. In addition, AmyI-1-18 analogs exhibited little or no cytotoxic activity against RAW264 cells, indicating that enhancements of anti-inflammatory and LPS-neutralizing activities following replacement of arginine or leucine did not result in significant increases in cytotoxicity. This study shows that the arginine-substituted and leucine-substituted AmyI-1-18 analogs with improved anti-endotoxic and antimicrobial activities have clinical potential as dual-function host defense agents. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Arginine/chemistry , Leucine/chemistry , Lipopolysaccharides/antagonists & inhibitors , Plant Proteins/pharmacology , alpha-Amylases/pharmacology , Amino Acid Sequence , Amino Acid Substitution , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Cell Line , Humans , Hydrophobic and Hydrophilic Interactions , Limulus Test , Lipopolysaccharides/chemistry , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Oryza/chemistry , Plant Proteins/chemical synthesis , Plant Proteins/chemistry , Protein Binding , Structure-Activity Relationship , alpha-Amylases/chemical synthesis , alpha-Amylases/chemistry
6.
J Biosci Bioeng ; 122(4): 385-92, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27038670

ABSTRACT

In our previous study, we used a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on Escherichia coli lysate, for evaluating the inhibition of green fluorescent protein (GFP) synthesis by pyrrhocoricin. In this study, using an RTS, we evaluated the inhibition of GFP synthesis by AmyI-1-18, an antimicrobial octadecapeptide. We found that, similarly to pyrrhocoricin, AmyI-1-18 inhibited GFP synthesis in the RTS in a concentration-dependent manner. In addition, the blockage of transcription and translation steps in the RTS was individually estimated using RT-PCR after gene expression to determine the mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that the inhibition of GFP synthesis by AmyI-1-18 did not occur at the transcription step but rather at the translation step. Furthermore, we assessed the inhibition of DnaK-mediated refolding of chemically denatured luciferase by AmyI-1-18; AmyI-1-18 inhibited the protein folding activity of the ATP-dependent DnaK/DnaJ molecular chaperone system in a concentration-dependent manner. Surface plasmon resonance (SPR) analysis showed that AmyI-1-18 strongly bound to RNA with a KD value of 1.4 × 10(-8) M but not to DNA and that AmyI-1-18 specifically bound to DnaK with a KD value of 4.4 × 10(-6) M. These SPR analysis results supported the results obtained in both the RTS and the molecular chaperone system. These results demonstrated that both RNA and DnaK are most likely the target of AmyI-1-18 in the protein synthesis system.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Oryza/enzymology , Peptide Fragments/pharmacology , Protein Biosynthesis/drug effects , Protein Folding/drug effects , alpha-Amylases/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cations/chemistry , Cations/pharmacology , Cell-Free System , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/genetics , HSP40 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Insect Proteins/pharmacology , Luciferases/chemistry , Luciferases/drug effects , Luciferases/metabolism , Peptide Fragments/chemistry , RNA, Messenger/genetics , RNA, Messenger/isolation & purification , RNA, Messenger/metabolism , Transcription, Genetic/drug effects , alpha-Amylases/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...