Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 29: 115866, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33203607

ABSTRACT

Amphiphilic derivatives of (±)-trans-1,2-diselenane-4,5-diol (DSTox) decorated with long alkyl chains or aromatic substituents via ester linkages were applied as glutathione peroxidase (GPx)-like catalysts. The reduction of H2O2 with the diselenide catalysts was accelerated through a GPx-like catalytic cycle, in which the diselenide (Se-Se) bond was reduced to the diselenolate form ([Se-,Se-]) by coexisting dithiothreitol, and the generated highly active [Se-,Se-] subsequently reduced H2O2 to H2O retrieving the original Se-Se form. In the lipid peroxidation of lecithin/cholesterol liposomes induced by 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), on the other hand, the Se-Se form directly reduced lipid peroxide (LOOH) to the corresponding alcohol (LOH), inhibiting the radical chain reaction, to exert the antioxidative effect. Thus, the two GPx-like catalytic cycles can be switched depending on the peroxide substrates. Furthermore, hydrophilic compounds with no or short alkyl groups (C3) showed high antioxidative activities for the catalytic reduction of H2O2, while lipophilic compounds with long alkyl chains (C6-C14) or aromatic substituents were more effective antioxidants against lipid peroxidation. In addition, these compounds showed low cytotoxicity in cultured HeLa cells and exhibited sufficient anti-lipid peroxidative activities, suggesting their potentials as selenium-based antioxidative drugs.


Subject(s)
Antioxidants/chemistry , Peroxides/chemistry , Surface-Active Agents/chemistry , Antioxidants/pharmacology , Catalysis , Cell Survival/drug effects , Dose-Response Relationship, Drug , HeLa Cells , Humans , Hydrogen Peroxide/chemistry , Molecular Structure , Oxidation-Reduction , Oxidative Stress/drug effects , Stereoisomerism , Structure-Activity Relationship , Surface-Active Agents/pharmacology , Tumor Cells, Cultured
2.
Chemistry ; 25(55): 12751-12760, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31390113

ABSTRACT

At the redox-active center of thioredoxin reductase (TrxR), a selenenyl sulfide (Se-S) bond is formed between Cys497 and Sec498, which is activated into the thiolselenolate state ([SH,Se- ]) by reacting with a nearby dithiol motif ([SHCys59 ,SHCys64 ]) present in the other subunit. This process is achieved through two reversible steps: an attack of a cysteinyl thiol of Cys59 at the Se atom of the Se-S bond and a subsequent attack of a remaining thiol at the S atom of the generated mixed Se-S intermediate. However, it is not clear how the kinetically unfavorable second step progresses smoothly in the catalytic cycle. A model study that used synthetic selenenyl sulfides, which mimic the active site structure of human TrxR comprising Cys497, Sec498, and His472, suggested that His472 can play a key role by forming a hydrogen bond with the Se atom of the mixed Se-S intermediate to facilitate the second step. In addition, the selenenyl sulfides exhibited a defensive ability against H2 O2 -induced oxidative stress in cultured cells, which suggests the possibility for medicinal applications to control the redox balance in cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...