Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Rehabil Sci ; 3: 893038, 2022.
Article in English | MEDLINE | ID: mdl-36189004

ABSTRACT

Background: There is emerging evidence that pelvic floor muscle training (PFMT) may be useful for treating some urogenital conditions in people with spinal cord injury (SCI). Future clinical investigations would benefit from understanding the extent to which people with SCI are aware of and practicing PFMT, and their attitude toward this therapy. Objective: The goal of this study was to assess the knowledge, attitudes, and practices related to PFMT among people with SCI. Methods: We distributed an internet survey internationally via SCI related organizations for 2 months. We used descriptive statistics to summarize each survey item, and Chi-square and Mann-Whitney U tests to explore the differences in results between sexes and level of motor-function. Results: Complete data from 153 respondents were analyzed. Sixty-two percent of respondents were female and 71% reported having complete paralysis. More than half of respondents reported being aware of PFMT (63%); more females than males reported knowledge of PFMT (p = 0.010). Females (p = 0.052) and people with partial paralysis (p = 0.008) reported a stronger belief that they would benefit from PFMT. Few people with SCI had practiced PFMT (20%), and of those who practiced, most of them had SCI resulting in partial paralysis (p = 0.023). Conclusions: While people with SCI may be aware of and have favorable attitudes toward PFMT, few had practiced PFMT and there were notable differences in attitudes toward PFMT depending on the sex and level of motor function of the respondents.

2.
Front Hum Neurosci ; 16: 912839, 2022.
Article in English | MEDLINE | ID: mdl-35845247

ABSTRACT

Introduction: The pelvic floor muscles (PFM) are active during motor tasks that increase intra-abdominal pressure, but little is known about how the PFM respond to dynamic activities, such as gait. The purpose of this study was to characterize and compare PFM activity during walking and jogging in continent adults across the entire gait cycle. Methods: 17 able-bodied individuals (8 females) with no history of incontinence participated in this study. We recorded electromyography (EMG) from the abdominal muscles, gluteus maximus (GM), and PFM while participants performed attempted maximum voluntary contractions (aMVC) of all muscles and completed 60-70 strides in four gait conditions: slow walk (1 km/h); regular walk (self-selected comfortable pace); transition walk (self-selected fastest walking pace); jog (same speed as transition walking). We quantified activity throughout the whole gait cycle (%aMVCGC) and during periods of bursting (%aMVCBR) for each participant, and analyzed the timing of PFM bursting periods to explore when the PFM were most active in the gait cycle. We also conducted a phase metric analysis on the PFM and GM burst timings. We performed a Spearman's rank-order correlation to examine the effect of speed on %aMVCGC, %aMVCBR, and phase metric score, and used the Wilcoxon Signed-Rank test to evaluate the effect of gait modality, matched for speed (walking vs. jogging), on these variables. Results: The PFM were active throughout the gait cycle, with bursts typically occurring during single-leg support. The PFM and GM were in phase for 44-69% of the gait cycle, depending on condition. There was a positive correlation between gait speed and both %aMVCGC and %aMVCBR (p < 0.001). Phase metric scores were significantly higher during jogging than transition walking (p = 0.005), but there was no difference between gait modality on %aMVCGC or %aMVCBR (p = 0.059). Where possible we disaggregated data by sex, although were unable to make statistical comparisons due to low sample sizes. Conclusion: The PFM are active during walking and jogging, with greater activity at faster speeds and with bursts in activity around single-leg support. The PFM and GM co-activate during gait, but are not completely in phase with each other.

SELECTION OF CITATIONS
SEARCH DETAIL
...