Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Nutrients ; 15(4)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36839223

ABSTRACT

Presenteeism is a problem that needs to be solved urgently, both for individual workers and for society overall. In this report, we propose the concept of MHC, which refers to mild mental and physical complaints subjectively perceived by individuals that are not caused by illness. We also planned to examine what kind of physical and mental disorder MHC is and whether food is effective as a method of self-care for MHC. First, we conducted "the comprehensive survey to establish an integrated database of food, gut microbiome, and health information" (the "Sukoyaka Health Survey") and obtained data on psychosomatic disorders and intakes of dietary nutrients. As a result, through factor analysis and item response theory analysis, we found the following specific examples of MHC: lack of vigor, irritability, fatigue, and somatic complaints. In addition, analysis of the relationship between these four MHC levels and the intake dietary nutrients indicated that they are closely related and that MHC levels can be improved by consuming sufficient amounts of multiple nutrients.


Subject(s)
Diet , Mental Disorders , Humans , Nutrients , Food , Surveys and Questionnaires
2.
Nat Commun ; 9(1): 2132, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29875377

ABSTRACT

Abscisic acid (ABA) regulates abiotic stress and developmental responses including regulation of seed dormancy to prevent seeds from germinating under unfavorable environmental conditions. ABA HYPERSENSITIVE GERMINATION1 (AHG1) encoding a type 2C protein phosphatase (PP2C) is a central negative regulator of ABA response in germination; however, the molecular function and regulation of AHG1 remain elusive. Here we report that AHG1 interacts with DELAY OF GERMINATION1 (DOG1), which is a pivotal positive regulator in seed dormancy. DOG1 acts upstream of AHG1 and impairs the PP2C activity of AHG1 in vitro. Furthermore, DOG1 has the ability to bind heme. Binding of DOG1 to AHG1 and heme are independent processes, but both are essential for DOG1 function in vivo. Our study demonstrates that AHG1 and DOG1 constitute an important regulatory system for seed dormancy and germination by integrating multiple environmental signals, in parallel with the PYL/RCAR ABA receptor-mediated regulatory system.


Subject(s)
Arabidopsis Proteins/genetics , Germination/genetics , Phosphoprotein Phosphatases/genetics , Plant Dormancy/genetics , Seeds/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Heme/metabolism , Mutation , Phosphoprotein Phosphatases/metabolism , Plants, Genetically Modified , Protein Binding , Seeds/growth & development , Seeds/metabolism
3.
BMC Genomics ; 16: 1110, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26715311

ABSTRACT

BACKGROUND: Drought tolerance is a complex quantitative trait that involves the coordination of a vast array of genes belonging to different pathways. To identify genes related to the drought-tolerance pathway in rice, we carried out gene-expression profiling of the leaves of near-isogenic lines (NILs) with similar genetic backgrounds and different set of QTLs but contrasting drought tolerance levels in response to long-term drought-stress treatments. This work will help differentiate mechanisms of tolerance in contrasting NILs and accelerate molecular breeding programs to improve drought tolerance in this crop. RESULTS: The two pairs of rice NILs, developed at the International Rice Research Institute, along with the drought-susceptible parent, IR64, showed distinct gene-expression profiles in leaves under different water-deficit (WD) treatments. Drought tolerance in the highly drought-tolerant NIL (DTN), IR77298-14-1-2-B-10, could be attributed to the up-regulation of genes with calcium ion binding, transferase, hydrolase and transcription factor activities, whereas in the moderate DTN, IR77298-5-6-B-18, genes with transporter, catalytic and structural molecule activities were up-regulated under WD. In IR77298-14-1-2-B-10, the induced genes were characterized by the presence of regulatory motifs in their promoters, including TGGTTAGTACC and ([CT]AAC[GT]G){2}, which are specific to the TFIIIA and Myb transcription factors, respectively. In IR77298-5-6-B-18, promoters containing a GCAC[AG][ACGT][AT]TCCC[AG]A[ACGT]G[CT] motif, common to MADS(AP1), HD-ZIP, AP2 and YABBY, were induced, suggesting that these factors may play key roles in the regulation of drought tolerance in these two DTNs under severe WD. CONCLUSIONS: We report here that the two pairs of NILs with different levels of drought tolerance may elucidate potential mechanisms and pathways through transcriptome data from leaf tissue. The present study serves as a resource for marker discovery and provides detailed insight into the gene-expression profiles of rice leaves, including the main functional categories of drought-responsive genes and the genes that are involved in drought-tolerance mechanisms, to help breeders identify candidate genes (both up- and down-regulated) associated with drought tolerance and suitable targets for manipulating the drought-tolerance trait in rice.


Subject(s)
Oryza/genetics , Plant Leaves/genetics , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics
4.
Front Plant Sci ; 6: 676, 2015.
Article in English | MEDLINE | ID: mdl-26442000

ABSTRACT

Expression levels of the NAC gene family were studied in rice infected with Rice dwarf virus (RDV), Rice black-streaked dwarf virus (RBSDV), Rice grassy stunt virus (RGSV), Rice ragged stunt virus (RRSV), and Rice transitory yellowing virus (RTYV). Microarray analysis showed that 75 (68%) OsNAC genes were differentially regulated during infection with RDV, RBSDV, RGSV, and RRSV compared with the control. The number of OsNAC genes up-regulated was highest during RGSV infection, while the lowest number was found during RTYV infection. These phenomena correlate with the severity of the syndromes induced by the virus infections. Most of the genes in the NAC subgroups NAC22, SND, ONAC2, ANAC34, and ONAC3 were down-regulated for all virus infections. These OsNAC genes might be related to the health stage maintenance of the host plants. Interestingly, most of the genes in the subgroups TIP and SNAC were more highly expressed during RBSDV and RGSV infections. These results suggested that OsNAC genes might be related to the responses induced by the virus infection. All of the genes assigned to the TIP subgroups were highly expressed during RGSV infection when compared with the control. For RDV infection, the number of activated genes was greatest during infection with the S-strain, followed by the D84-strain and the O-strain, with seven OsNAC genes up-regulated during infection by all three strains. The Os12g03050 and Os11g05614 genes showed higher expression during infection with four of the five viruses, and Os11g03310, Os11g03370, and Os07g37920 genes showed high expression during at least three viral infections. We identified some duplicate genes that are classified as neofunctional and subfunctional according to their expression levels in different viral infections. A number of putative cis-elements were identified, which may help to clarify the function of these key genes in network pathways.

5.
J Hered ; 105(5): 723-38, 2014.
Article in English | MEDLINE | ID: mdl-25124817

ABSTRACT

In the summer of 2012, 1 year after the nuclear accident in March 2011 at the Fukushima Daiichi nuclear power plant, we examined the effects of gamma radiation on rice at a highly contaminated field of Iitate village in Fukushima, Japan. We investigated the morphological and molecular changes on healthy rice seedlings exposed to continuous low-dose gamma radiation up to 4 µSv h(-1), about 80 times higher than natural background level. After exposure to gamma rays, expression profiles of selected genes involved in DNA replication/repair, oxidative stress, photosynthesis, and defense/stress functions were examined by RT-PCR, which revealed their differential expression in leaves in a time-dependent manner over 3 days (6, 12, 24, 48, and 72 h). For example, OsPCNA mRNA rapidly increased at 6, 12, and 24 h, suggesting that rice cells responded to radiation stress by activating a gene involved in DNA repair mechanisms. At 72 h, genes related to the phenylpropanoid pathway (OsPAL2) and cell death (OsPR1oa) were strongly induced, indicating activation of defense/stress responses. We next profiled the transcriptome using a customized rice whole-genome 4×44K DNA microarray at early (6h) and late (72 h) time periods. Low-level gamma radiation differentially regulated rice leaf gene expression (induced 4481 and suppressed 3740 at 6 h and induced 2291 and suppressed 1474 genes at 72 h) by at least 2-fold. Using the highly upregulated and downregulated gene list, MapMan bioinformatics tool generated diagrams of early and late pathways operating in cells responding to gamma ray exposure. An inventory of a large number of gamma radiation-responsive genes provides new information on novel regulatory processes in rice.


Subject(s)
Fukushima Nuclear Accident , Gamma Rays/adverse effects , Gene Expression Regulation, Plant/radiation effects , Oryza/genetics , Plant Leaves/genetics , Seedlings/genetics , Computational Biology , Dose-Response Relationship, Radiation , Japan , Oligonucleotide Array Sequence Analysis , Oryza/radiation effects , Plant Leaves/radiation effects , Quality Control , RNA, Plant/genetics , Radioactive Pollutants/toxicity , Reverse Transcriptase Polymerase Chain Reaction , Seedlings/radiation effects
6.
Rice (N Y) ; 7(1): 10, 2014.
Article in English | MEDLINE | ID: mdl-24987489

ABSTRACT

BACKGROUND: Throughout Asia, including Japan, rice plants are cultivated in a wide range of areas from lowlands to highlands and are frequently exposed to fog, including acid fog. Some physiological studies have shown that acid fog can be a stress factor for plants. We analyzed the gene expression profiles of rice plants treated with artificially prepared simulated acid fog (SiAF) or simulated neutral fog (SiNF) for 1 or 7 days. RESULTS: Microarray analysis results suggested that both the SiAF and the SiNF treatments induced the expression of genes involved in the defense and stress responses in rice plants. Induction of such genes was detected in plants treated with SiAF for 1 day, and the number of induced genes increased in plants treated with SiAF for 7 days. The genes for defense and stress responses were also induced by SiNF for 7 days, although they were not induced by SiNF for 1 day. The gene expression profiles of the SiAF-treated and the SiNF-treated plants were compared to those of plants treated with other stress factors. The comparison revealed that both SiAF and SiNF treatments have similar effects to biotic stresses and ozone stress. The genes encoding NADPH oxidase and germin, which function in apoplasts, were also induced by SiAF, SiNF and biotic stresses. CONCLUSIONS: These findings suggest that both the SiAF and the SiNF treatments may result in oxidative stress through the apoplastic production of reactive oxygen species.

7.
Front Microbiol ; 5: 26, 2014.
Article in English | MEDLINE | ID: mdl-24550897

ABSTRACT

Rice tungro disease is a complex disease caused by the interaction between Rice tungro bacilliform virus and Rice tungro spherical virus (RTSV). RTSV alone does not cause recognizable symptoms in most Asian rice (Oryza sativa) plants, whereas some African rice (O. glaberrima) plants were found to become stunted by RTSV. Stunting of rice plants by virus infections usually accompanies the suppression of various cell wall-related genes. The expression of cell wall-related genes was examined in O. glaberrima and O. sativa infected with RTSV to see the relationship between the severity of stunting and the suppression of cell wall-related genes by RTSV. The heights of four accessions of O. glaberrima were found to decline by 14-34% at 28 days post-inoculation (dpi) with RTSV, whereas the height reduction of O. sativa plants by RTSV was not significant. RTSV accumulated more in O. glaberrima plants than in O. sativa plants, but the level of RTSV accumulation was not correlated with the degree of height reduction among the four accessions of O. glaberrima. Examination for expression of genes for cellulose synthase A5 (CESA5) and A6 (CESA6), cellulose synthase-like A9 (CSLA9) and C7, and α-expansin 1 (expansin 1) and 15 precursors in O. glaberrima and O. sativa plants between 7 and 28 dpi with RTSV showed that the genes such as those for CESA5, CESA6, CSLA9, and expansin 1were more significantly suppressed in stunted plants of O. glaberrima at 14 dpi with RTSV than in O. sativa, suggesting that stunting of O. glaberrima might be associated with these cell wall-related genes suppressed by RTSV. Examination for expression of these genes in O. sativa plants infected with other rice viruses in previous studies indicated that the suppression of the expansin 1 gene is likely to be a signature response commonly associated with virus-induced stunting of Oryza species. These results suggest that stunting of O. glaberrima by RTSV infection might be associated with the suppression of these cell wall-related genes at the early stage of infection with RTSV.

8.
J Plant Physiol ; 171(1): 2-13, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24189206

ABSTRACT

The OsWRKY genes play various roles in developmental processes and in stress-related responses in plants. We describe the rice OsWRKY gene expression profiles (GEPs) under control, hormone-treated, and water-deficit treatment (WDT) conditions. The preferential expression of 3 genes was observed in specific tissues, suggesting that these genes may play important roles in the root and panicle stages of growth. To investigate the GEPs in the root and panicle of 3 rice genotypes, we used 2 near-isogenic rice lines from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water (FTSW) for severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Affymetrix and Agilent was performed on all the tissues. The majority of the OsWRKY genes that were activated were activated in the drought-tolerant IR77298-14-1-2-B-10 line but not in the drought-susceptible IR77298-14-1-2-B-13 or IR64 lines. In IR77298-14-1-2-B-10, non-redundant genes (9) were very specific in their higher expression levels. Approximately 27 and 43% more genes from group III and subgroup IV-a, respectively, were activated in the panicle during severe stress than during the control treatment. We found 5 OsWRKY genes that introgressed in the drought-tolerant IR77298-14-1-2-B-10 line. Os01g43650 was up-regulated in the root under both WDTs and in the panicle under mild stress. OsWRKY up-regulated genes with tissue-specific expression patterns that contained at least 3 cis-elements in the tolerant line. These results provide a useful reference for the cloning of candidate genes for further functional analysis.


Subject(s)
Gene Expression Regulation, Plant , Oryza/genetics , Plant Proteins/genetics , Transcriptome , Down-Regulation , Droughts , Flowers/drug effects , Flowers/genetics , Flowers/physiology , Gene Expression Profiling , Genotype , Models, Biological , Multigene Family , Oligonucleotide Array Sequence Analysis , Oryza/drug effects , Oryza/physiology , Phenotype , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/physiology , Stress, Physiological , Up-Regulation , Water/physiology
9.
Front Microbiol ; 4: 313, 2013.
Article in English | MEDLINE | ID: mdl-24151491

ABSTRACT

Rice grassy stunt virus (RGSV) is a serious threat to rice production in Southeast Asia. RGSV is a member of the genus Tenuivirus, and it induces leaf yellowing, stunting, and excess tillering on rice plants. Here we examined gene responses of rice to RGSV infection to gain insight into the gene responses which might be associated with the disease symptoms. The results indicated that (1) many genes related to cell wall synthesis and chlorophyll synthesis were predominantly suppressed by RGSV infection; (2) RGSV infection induced genes associated with tillering process; (3) RGSV activated genes involved in inactivation of gibberellic acid and indole-3-acetic acid; and (4) the genes for strigolactone signaling were suppressed by RGSV. These results suggest that these gene responses to RGSV infection account for the excess tillering specific to RGSV infection as well as other symptoms by RGSV, such as stunting and leaf chlorosis.

10.
Plant Signal Behav ; 8(11): e26300, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24025514

ABSTRACT

High ozone (O3) concentrations not only damage plant life but also cause considerable losses in plant productivity. To screen for molecular factors usable as potential biomarkers to identify for O3-sensitive and -tolerant lines and design O3 tolerant crops, our project examines the effects of O3 on rice, using high-throughput omics approaches. In this study, we examined growth and yield parameters of 4 rice cultivars fumigated for a life-time with ambient air (mean O3: 31.4-32.7 ppb) or filtered air (mean O3: 6.6-8.3 ppb) in small open-top chambers (sOTCs) to select O3-sensitive (indica cv Takanari) and O3-tolerant (japonica cv Koshihikari) cultivars for analysis of seed transcriptomes using Agilent 4 × 44K rice oligo DNA chip. Total RNA from dry mature dehusked seeds of Takanari and Koshihikari cultivars was extracted using a modified protocol based on cethyltrimethylammonium bromide extraction buffer and phenol-chloroform-isoamylalcohol treatment, followed by DNA microarray analysis using the established dye-swap method. Direct comparison of Koshihikari and Takanari O3 transcriptomes in seeds of rice plants fumigated with ambient O3 in sOTCs successfully showed that genes encoding proteins involved in jasmonic acid, GABA biosynthesis, cell wall and membrane modification, starch mobilization, and secondary metabolite biosynthesis are differently regulated in sensitive cv Takanari and tolerant cv Koshihikari. MapMan analysis further mapped the molecular factors activated by O3, confirming Takanari is rightly classified as an O3 sensitive genotype.


Subject(s)
Ecotype , Fumigation , Oryza/drug effects , Oryza/genetics , Ozone/pharmacology , Seeds/genetics , Transcriptome/genetics , Adaptation, Physiological/drug effects , Adaptation, Physiological/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genes, Plant , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Oryza/growth & development , Oryza/metabolism , Seeds/drug effects , Seeds/growth & development , Seeds/metabolism , Transcriptome/drug effects
11.
PLoS One ; 8(5): e62795, 2013.
Article in English | MEDLINE | ID: mdl-23667521

ABSTRACT

BACKGROUND: Rice (Oryza sativa L.) is a highly drought sensitive crop, and most semi dwarf rice varieties suffer severe yield losses from reproductive stage drought stress. The genetic complexity of drought tolerance has deterred the identification of agronomically relevant quantitative trait loci (QTL) that can be deployed to improve rice yield under drought in rice. Convergent evidence from physiological characterization, genetic mapping, and multi-location field evaluation was used to address this challenge. METHODOLOGY/PRINCIPAL FINDINGS: Two pairs of backcross inbred lines (BILs) from a cross between drought-tolerant donor Aday Sel and high-yielding but drought-susceptible rice variety IR64 were produced. From six BC4F3 mapping populations produced by crossing the +QTL BILs with the -QTL BILs and IR64, four major-effect QTL--one each on chromosomes 2, 4, 9, and 10--were identified. Meta-analysis of transcriptome data from the +QTL/-QTL BILs identified differentially expressed genes (DEGs) significantly associated with QTL on chromosomes 2, 4, 9, and 10. Physiological characterization of BILs showed increased water uptake ability under drought. The enrichment of DEGs associated with root traits points to differential regulation of root development and function as contributing to drought tolerance in these BILs. BC4F3-derived lines with the QTL conferred yield advantages of 528 to 1875 kg ha⁻¹ over IR64 under reproductive-stage drought stress in the targeted ecosystems of South Asia. CONCLUSIONS/SIGNIFICANCE: Given the importance of rice in daily food consumption and the popularity of IR64, the BC4F3 lines with multiple QTL could provide higher livelihood security to farmers in drought-prone environments. Candidate genes were shortlisted for further characterization to confirm their role in drought tolerance. Differential yield advantages of different combinations of the four QTL reported here indicate that future research should include optimizing QTL combinations in different genetic backgrounds to maximize yield advantage under drought.


Subject(s)
Adaptation, Biological/genetics , Agriculture/methods , Droughts , Oryza/growth & development , Oryza/genetics , Quantitative Trait Loci/genetics , Transcriptome/genetics , Crosses, Genetic , Species Specificity
12.
Biotechnol Lett ; 35(4): 647-56, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23264265

ABSTRACT

The 'ozone (O3)-responsive transcriptome' behavior in the panicles and grains of rice plant was studied individually through high-throughput oligo-DNA microarray technique. O3 differentially and separately regulated 620 and 130 genes in the panicles and grains. Among the O3-responsive genes, 176 and 444 genes were up- and down-regulated in panicle compared to 24 and 106 genes in grain, respectively. Further mapping revealed that the majority of differentially expressed genes were mainly involved in signaling, hormonal, cell wall, transcription, proteolysis, and defense events. Many previously unknown O3-responsive novel genes were identified. Inventory of 745 O3-responsive genes and their mapping will expand our knowledge on novel regulatory processes in both panicles and grains of rice; and, serve as a resource towards the designing of rice crops for future high-O3world. PURPOSE OF WORK: Tropospheric ozone (O3) severely affects agricultural production worldwide. Present study aims to reveal a detailed O3 responsive gene network in panicle and grains of rice plants through transcriptomics approach. Our results provide an insight into the basis of O3-response in rice plants, and will help to develop suitable rice genotype for future high O3- world.


Subject(s)
Gene Expression Regulation, Plant , Oryza/drug effects , Ozone/toxicity , Seeds/drug effects , Stress, Physiological , Transcriptome , Microarray Analysis
13.
Virus Res ; 171(1): 111-20, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23183448

ABSTRACT

Rice cultivar Taichung Native 1 (TN1) is susceptible to Rice tungro spherical virus (RTSV). TW16 is a backcross line developed between TN1 and RTSV-resistant cultivar Utri Merah. RTSV accumulation in TW16 was significantly lower than in TN1, although both TN1 and TW16 remained asymptomatic. We compared the gene expression profiles of TN1 and TW16 infected by RTSV to identify the gene expression patterns accompanying the accumulation and suppression of RTSV. About 11% and 12% of the genes in the entire genome were found differentially expressed by RTSV in TN1 and TW16, respectively. About 30% of the differentially expressed genes (DEGs) were detected commonly in both TN1 and TW16. DEGs related to development and stress response processes were significantly overrepresented in both TN1 and TW16. Evident differences in gene expression between TN1 and TW16 instigated by RTSV included (1) suppression of more genes for development-related transcription factors in TW16; (2) activation of more genes for development-related peptide hormone RALF in TN1; (3) TN1- and TW16-specific regulation of genes for jasmonate synthesis and pathway, and genes for stress-related transcription factors such as WRKY, SNAC, and AP2-EREBP; (4) activation of more genes for glutathione S-transferase in TW16; (5) activation of more heat shock protein genes in TN1; and (6) suppression of more genes for Golden2-like transcription factors involved in plastid development in TN1. The results suggest that a significant number of defense and development-related genes are still regulated in asymptomatic plants even with a very low level of RTSV, and that the TN1- and TW16-specific gene regulations might be associated with regulation of RTSV accumulation in the plants.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/virology , Plant Diseases/genetics , Plant Diseases/virology , Waikavirus/physiology , Molecular Sequence Annotation , Oryza/immunology , Photosynthesis/genetics , Plant Diseases/immunology , Transcriptome
14.
Biochem Biophys Res Commun ; 423(2): 417-23, 2012 Jun 29.
Article in English | MEDLINE | ID: mdl-22683629

ABSTRACT

Thioredoxin (TRX) is a multi-functional redox protein. Genome-wide survey and expression profiles of different stresses were observed. Conserved amino acid residues and phylogeny construction using the OsTRX conserved domain sequence suggest that the TRX gene family can be classified broadly into six subfamilies in rice. We compared potential gene birth-and-death events in the OsTRX genes. The Ka/Ks ratio is a measure to explore the mechanism and 3 evolutionary stages of the OsTRX genes divergence after duplication. We used 270 TRX genes from monocots and eudicots for synteny analysis. Furthermore, we investigated expression profiles of this gene family under 5 biotic and 3 abiotic stresses. Several genes were differentially expressed with high levels of expression and exhibited subfunctionalization and neofunctionalization after the duplication event response to different stresses, which provides novel reference for the cloning of the most promising candidate genes from OsTRX gene family for further functional analysis.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Multigene Family , Oryza/genetics , Stress, Physiological/genetics , Thioredoxins/genetics , Evolution, Molecular , Gene Duplication , Gene Expression Profiling
15.
Mol Genet Genomics ; 287(5): 389-410, 2012 May.
Article in English | MEDLINE | ID: mdl-22526427

ABSTRACT

The NAC (NAM, ATAF1/2 and CUC2) genes are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. We describe the rice (Oryza sativa) OsNAC genes expression profiles (GEPs) under normal and water-deficit treatments (WDTs). The GEPs of the OsNAC genes were analyzed in 25 tissues covering the entire life cycle of Minghui 63. High expression levels of 17 genes were demonstrated in certain tissues under normal conditions suggesting that these genes may play important roles in specific organs. We determined that 16 genes were differentially expressed under at least 1 phytohormone (NAA, GA3, KT, SA, ABA, and JA) treatment. To investigate the GEPs in the root, leaf, and panicle of three rice genotypes [e.g., 2 near-isogenic lines (NILs) and IR64], we used two NILs from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water at severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from the two NILs under both WDTs, and the majority of the OsNAC genes that were activated were in the drought-tolerant IR77298-14-1-2-B-10 line compared with the drought-susceptible IR77298-14-1-2-B-13 or IR64. In IR77298-14-1-2-B-10, seventeen genes were very specific in their expression levels. Approximately 70 % of the genes from subgroups SNAC and NAM/CUC3 were activated in the leaf, but 37 % genes from subgroup SND were inactivated in the root compared with the control under severe stress conditions. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.


Subject(s)
Genes, Plant , Oryza/genetics , Crosses, Genetic , Droughts , Flowering Tops/drug effects , Flowering Tops/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Genes, Plant/drug effects , Genes, Regulator , Genetic Complementation Test , Models, Genetic , Multigene Family/drug effects , Oryza/drug effects , Oryza/growth & development , Oryza/physiology , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Proteins/genetics , Plant Roots/drug effects , Plant Roots/genetics , RNA, Plant/genetics , Stress, Physiological/genetics , Transcription Factors/genetics
16.
Plant Physiol ; 158(4): 1833-46, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22353574

ABSTRACT

Brassinosteroids (BRs) are a unique class of plant steroid hormones that orchestrate myriad growth and developmental processes. Although BRs have long been known to protect plants from a suite of biotic and abiotic stresses, our understanding of the underlying molecular mechanisms is still rudimentary. Aiming to further decipher the molecular logic of BR-modulated immunity, we have examined the dynamics and impact of BRs during infection of rice (Oryza sativa) with the root oomycete Pythium graminicola. Challenging the prevailing view that BRs positively regulate plant innate immunity, we show that P. graminicola exploits BRs as virulence factors and hijacks the rice BR machinery to inflict disease. Moreover, we demonstrate that this immune-suppressive effect of BRs is due, at least in part, to negative cross talk with salicylic acid (SA) and gibberellic acid (GA) pathways. BR-mediated suppression of SA defenses occurred downstream of SA biosynthesis, but upstream of the master defense regulators NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and OsWRKY45. In contrast, BR alleviated GA-directed immune responses by interfering at multiple levels with GA metabolism, resulting in indirect stabilization of the DELLA protein and central GA repressor SLENDER RICE1 (SLR1). Collectively, these data favor a model whereby P. graminicola coopts the plant BR pathway as a decoy to antagonize effectual SA- and GA-mediated defenses. Our results highlight the importance of BRs in modulating plant immunity and uncover pathogen-mediated manipulation of plant steroid homeostasis as a core virulence strategy.


Subject(s)
Brassinosteroids/metabolism , Gibberellins/metabolism , Oryza/immunology , Oryza/microbiology , Plant Immunity/immunology , Plant Roots/immunology , Salicylic Acid/metabolism , Base Sequence , Brassinosteroids/biosynthesis , Brassinosteroids/pharmacology , Disease Resistance/drug effects , Disease Resistance/immunology , Gene Expression Regulation, Plant/drug effects , Models, Biological , Molecular Sequence Data , Oryza/drug effects , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/microbiology , Pythium , Salicylic Acid/pharmacology , Signal Transduction/drug effects , Steroids, Heterocyclic/pharmacology , Time Factors , Up-Regulation/drug effects , Up-Regulation/genetics
17.
Mol Genet Genomics ; 287(1): 1-19, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22102215

ABSTRACT

The AP2/EREBP genes play various roles in developmental processes and in stress-related responses in plants. Genome-wide microarrays based on the gene expression profiles of the AP2/EREBP family were analyzed under conditions of normal growth and drought stress. The preferential expression of fifteen genes was observed in specific tissues, suggesting that these genes may play important roles in vegetative and reproductive stages of growth. A large number of redundant genes were differentially expressed following phytohormone treatments (NAA, GA3, KT, SA, JA, and ABA). To investigate the gene expression responses in the root, leaf, and panicle of three rice genotypes, two drought stress conditions were applied using the fraction of transpirable soil water (FTSW) under severe (0.2 FTSW), mild (0.5 FTSW), and control (1.0 FTSW) conditions. Following treatment, transcriptomic analysis using a 44-K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from two near-isogenic lines, IR77298-14-1-2-B-10 (drought tolerant) and IR77298-14-1-2-B-13 (drought susceptible), under drought stress conditions. The majority of the genes that were activated in the IR77298-14-1-2-B-10 line were members of the AP2/EREBP gene family. Non-redundant genes (sixteen) were found in the drought-tolerant line, and four genes were selected as candidate novel reference genes because of their higher expression levels in IR77298-14-1-2-B-10. Most of the genes in the AP2, B3, and B5 subgroups were involved in the panicle under severe stress conditions, but genes from the B1 and B2 subgroups were down-regulated in the root. Of the four subfamilies, RAV exhibited the highest number of up-regulated genes (80%) in the panicle under severe stress conditions in the drought-tolerant line compared to Minghui 63 under normal conditions, and the gene structures of the RAV subfamily may be involved in the response to drought stress in the flowering stage. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Droughts , Gene Expression Regulation, Plant/drug effects , Multigene Family/genetics , Oryza/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/physiology , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genotype , Microarray Analysis , Oryza/growth & development , Oryza/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/metabolism , Plant Roots/metabolism , Quantitative Trait Loci/genetics , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Stress, Physiological/genetics
18.
BMC Plant Biol ; 11: 174, 2011 Dec 02.
Article in English | MEDLINE | ID: mdl-22136218

ABSTRACT

BACKGROUND: Plant roots are important organs to uptake soil water and nutrients, perceiving and transducing of soil water deficit signals to shoot. The current knowledge of drought stress transcriptomes in rice are mostly relying on comparative studies of diverse genetic background under drought. A more reliable approach is to use near-isogenic lines (NILs) with a common genetic background but contrasting levels of resistance to drought stress under initial exposure to water deficit. Here, we examined two pairs of NILs in IR64 background with contrasting drought tolerance. We obtained gene expression profile in roots of rice NILs under different levels of drought stress help to identify genes and mechanisms involved in drought stress. RESULTS: Global gene expression analysis showed that about 55% of genes differentially expressed in roots of rice in response to drought stress treatments. The number of differentially expressed genes (DEGs) increased in NILs as the level of water deficits, increased from mild to severe condition, suggesting that more genes were affected by increasing drought stress. Gene onthology (GO) test and biological pathway analysis indicated that activated genes in the drought tolerant NILs IR77298-14-1-2-B-10 and IR77298-5-6-B-18 were mostly involved in secondary metabolism, amino acid metabolism, response to stimulus, defence response, transcription and signal transduction, and down-regulated genes were involved in photosynthesis and cell wall growth. We also observed gibberellic acid (GA) and auxin crosstalk modulating lateral root formation in the tolerant NILs. CONCLUSIONS: Transcriptome analysis on two pairs of NILs with a common genetic background (~97%) showed distinctive differences in gene expression profiles and could be effective to unravel genes involved in drought tolerance. In comparison with the moderately tolerant NIL IR77298-5-6-B-18 and other susceptible NILs, the tolerant NIL IR77298-14-1-2-B-10 showed a greater number of DEGs for cell growth, hormone biosynthesis, cellular transports, amino acid metabolism, signalling, transcription factors and carbohydrate metabolism in response to drought stress treatments. Thus, different mechanisms are achieving tolerance in the two tolerant lines.


Subject(s)
Droughts , Oryza/genetics , Plant Roots/genetics , Transcriptome , Gene Expression Regulation, Plant , Genotype , Microarray Analysis , Oryza/metabolism , Plant Roots/metabolism , RNA, Plant/genetics , Stress, Physiological
19.
PLoS One ; 6(3): e18094, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21445363

ABSTRACT

BACKGROUND: Rice dwarf virus (RDV) is the causal agent of rice dwarf disease, which often results in severe yield losses of rice in East Asian countries. The disease symptoms are stunted growth, chlorotic specks on leaves, and delayed and incomplete panicle exsertion. Three RDV strains, O, D84, and S, were reported. RDV-S causes the most severe symptoms, whereas RDV-O causes the mildest. Twenty amino acid substitutions were found in 10 of 12 virus proteins among three RDV strains. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the gene expression of rice in response to infection with the three RDV strains using a 60-mer oligonucleotide microarray to examine the relationship between symptom severity and gene responses. The number of differentially expressed genes (DEGs) upon the infection of RDV-O, -D84, and -S was 1985, 3782, and 6726, respectively, showing a correlation between the number of DEGs and symptom severity. Many DEGs were related to defense, stress response, and development and morphogenesis processes. For defense and stress response processes, gene silencing-related genes were activated by RDV infection and the degree of activation was similar among plants infected with the three RDV strains. Genes for hormone-regulated defense systems were also activated by RDV infection, and the degree of activation seemed to be correlated with the concentration of RDV in plants. Some development and morphogenesis processes were suppressed by RDV infection, but the degree of suppression was not correlated well with the RDV concentration. CONCLUSIONS/SIGNIFICANCE: Gene responses to RDV infection were regulated differently depending on the gene groups regulated and the strains infecting. It seems that symptom severity is associated with the degree of gene response in defense-related and development- and morphogenesis-related processes. The titer levels of RDV in plants and the amino acid substitutions in RDV proteins could be involved in regulating such gene responses.


Subject(s)
Gene Expression Regulation, Viral , Genes, Plant , Oryza/genetics , Plant Diseases/virology , Reoviridae/pathogenicity , Gene Expression Profiling , Gene Silencing , Oligonucleotide Array Sequence Analysis , Reoviridae/genetics
20.
Plant Cell Physiol ; 52(2): 344-60, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21169347

ABSTRACT

We identified 163 AP2/EREBP (APETALA2/ethylene-responsive element-binding protein) genes in rice. We analyzed gene structures, phylogenies, domain duplication, genome localizations and expression profiles. Conserved amino acid residues and phylogeny construction using the AP2/ERF conserved domain sequence suggest that in rice the OsAP2/EREBP gene family can be classified broadly into four subfamilies [AP2, RAV (related to ABI3/VP1), DREB (dehydration-responsive element-binding protein) and ERF (ethylene-responsive factor)]. The chromosomal localizations of the OsAP2/EREBP genes indicated 20 segmental duplication events involving 40 genes; 58 redundant OsAP2/EREBP genes were involved in tandem duplication events. There were fewer introns after segmental duplication. We investigated expression profiles of this gene family under biotic stresses [infection with rice viruses such as rice stripe virus (RSV), rice tungro spherical virus (RTSV) and rice dwarf virus (RDV, three virus strains S, O and D84)], and various abiotic stresses. Symptoms of virus infection were more severe in RSV infection than in RTSV and RDV infection. Responses to biotic stresses are novel findings and these stresses enhance the ability to identify the best candidate genes for further functional analysis. The genes of subgroup B-5 were not induced under abiotic treatments whereas they were activated by the three RDV strains. None of the genes of subgroups A-3 were differentially expressed by any of the biotic stresses. Our 44K and 22K microarray results suggest that 53 and 52 non-redundant genes in this family were up-regulated in response to biotic and abiotic stresses, respectively. We further examined the stress responsiveness of most genes by reverse transcription-PCR. The study results should be useful in selecting candidate genes from specific subgroups for functional analysis.


Subject(s)
DNA-Binding Proteins/genetics , Multigene Family , Oryza/genetics , Plant Proteins/genetics , Chromosome Mapping , DNA, Plant/genetics , DNA-Binding Proteins/metabolism , Databases, Genetic , Exons , Gene Duplication , Gene Expression Profiling , Gene Expression Regulation, Plant , Introns , Oryza/metabolism , Oryza/virology , Phylogeny , Plant Proteins/metabolism , Plant Viruses/pathogenicity , Sequence Alignment , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...