Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 139: 172-9, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24698992

ABSTRACT

The degradation of model dark brown colored coffee effluent using photocatalyst zinc oxide (ZnO) has been systematically studied by varying ZnO dosage from 0 to 4000 mg L(-1), coffee loading from 0 to 90 mg L(-1) and intensity of UV light having the radiation peak at 352 nm from 0 to 18 W(m-lamp length)(-1). Almost complete decolorization was achieved after 180 min for the initial coffee concentration of 50 mg L(-1) with ZnO dosage of 3000 mg L(-1) and three UV lamps. The dissolved oxygen (DO) largely affected the photodecolorization process. Without air sparging or with oxygen supply only through the free-surface, the DO concentration significantly decreased during the initial decolorization process and then increased to the saturated DO concentration after about 80% decolorization was achieved. Under the anoxic condition with nitrogen gas sparging, the efficient color removal was not obtained unlike the decolorization without air sparging or under the oxic condition with air sparging. These findings suggest that the change in DO concentration was controlled by the oxygen consumption for the formation of oxygen adduct intermediates such as organoperoxy radicals. The mineralization rate of model coffee effluent was rather slow as compared with the decolorization rate and it was insignificantly affected by anoxic and oxic conditions. The present results indicate that ZnO photocatalyst has potential for treatment of coffee processing wastewaters.


Subject(s)
Coffee , Oxygen/chemistry , Waste Disposal, Fluid/methods , Water Pollutants/chemistry , Zinc Oxide/chemistry , Catalysis , Color , Photolysis , Ultraviolet Rays , Wastewater , Zinc Oxide/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...