Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 216
Filter
1.
bioRxiv ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38562805

ABSTRACT

Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography, and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.

2.
Pathogens ; 13(3)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38535551

ABSTRACT

There are rare individuals whose insatiable curiosity and boundless intellect propel them into multiple frontiers of science, leaving an indelible mark on the fields that they venture into [...].

3.
iScience ; 26(12): 108502, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38125023

ABSTRACT

Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.

4.
Nat Commun ; 14(1): 7028, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919280

ABSTRACT

The leishmanin skin test was used for almost a century to detect exposure and immunity to Leishmania, the causative agent of leishmaniasis, a major neglected tropical disease. Due to a lack of antigen used for the intradermal injection, the leishmanin skin test is no longer available. As leishmaniasis control programs are advancing and new vaccines are entering clinical trials, it is essential to re-introduce the leishmanin skin test. Here we establish a Leishmania donovani strain and describe the production, under Good Laboratory Practice conditions, of leishmanin soluble antigen used to induce the leishmanin skin test in animal models of infection and vaccination. Using a mouse model of cutaneous leishmaniasis and a hamster model of visceral leishmaniasis, soluble antigen induces a leishmanin skin test response following infection and vaccination with live attenuated Leishmania major (LmCen-/-). Both the CD4+ and CD8+ T-cells are necessary for the leishmanin skin test response. This study demonstrates the feasibility of large-scale production of leishmanin antigen addressing a major bottleneck for performing the leishmanin skin test in future surveillance and vaccine clinical trials.


Subject(s)
Leishmania donovani , Leishmaniasis, Cutaneous , Animals , CD8-Positive T-Lymphocytes , Antigens, Protozoan , Leishmaniasis, Cutaneous/prevention & control , Skin Tests
5.
Cell Rep ; 42(9): 113097, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37682713

ABSTRACT

Although phagocytic cells are documented targets of Leishmania parasites, it is unclear whether other cell types can be infected. Here, we use unbiased single-cell RNA sequencing (scRNA-seq) to simultaneously analyze host cell and Leishmania donovani transcriptomes to identify and annotate parasitized cells in spleen and bone marrow in chronically infected mice. Our dual-scRNA-seq methodology allows the detection of heterogeneous parasitized populations. In the spleen, monocytes and macrophages are the dominant parasitized cells, while megakaryocytes, basophils, and natural killer (NK) cells are found to be unexpectedly infected. In the bone marrow, the hematopoietic stem cells (HSCs) expressing phagocytic receptors FcγR and CD93 are the main parasitized cells. Additionally, we also detect parasitized cycling basal cells, eosinophils, and macrophages in chronically infected mice. Flow cytometric analysis confirms the presence of parasitized HSCs. Our unbiased dual-scRNA-seq method identifies rare, parasitized cells, potentially implicated in pathogenesis, persistence, and protective immunity, using a non-targeted approach.

6.
iScience ; 26(9): 107594, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37744404

ABSTRACT

Leishmaniasis is a tropical disease prevalent in 90 countries. Presently, there is no approved vaccine for human use. We developed a live attenuated L. mexicana Cen-/-(LmexCen-/-) strain as a vaccine candidate that showed excellent efficacy, characterized by reduced Th2 and enhanced Th1 responses in C57BL/6 and BALB/c mice, respectively, compared to wild-type L. mexicana (LmexWT) infection. Toward understanding the immune mechanisms of protection, we applied untargeted mass spectrometric analysis to LmexCen-/- and LmexWT infections. Data showed enrichment of the pentose phosphate pathway (PPP) in ears immunized with LmexCen-/-versus naive and LmexWT infection. PPP promotes M1 polarization in macrophages, suggesting a switch to a pro-inflammatory phenotype following LmexCen-/- inoculation. Accordingly, PPP inhibition in macrophages infected with LmexCen-/- reduced the production of nitric oxide and interleukin (IL)-1ß, hallmarks of classical activation. Overall, our study revealed the immune regulatory mechanisms that may be critical for the induction of protective immunity.

7.
iScience ; 26(9): 107593, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37744403

ABSTRACT

Leishmaniasis is a parasitic disease that is prevalent in 90 countries, and yet no licensed human vaccine exists against it. Toward control of leishmaniasis, we have developed Leishmania major centrin gene deletion mutant strains (LmCen-/-) as a live attenuated vaccine, which induces a strong IFN-γ-mediated protection to the host. However, the immune mechanisms of such protection remain to be understood. Metabolomic reprogramming of the host cells following Leishmania infection has been shown to play a critical role in pathogenicity and shaping the immune response following infection. Here, we applied untargeted mass spectrometric analysis to study the metabolic changes induced by infection with LmCen-/- and compared those with virulent L. major parasite infection to identify the immune mechanism of protection. Our data show that immunization with LmCen-/- parasites, in contrast to virulent L. major infection promotes a pro-inflammatory response by utilizing tryptophan to produce melatonin and downregulate anti-inflammatory kynurenine-AhR and FICZ-AhR signaling.

8.
Res Rep Trop Med ; 14: 61-85, 2023.
Article in English | MEDLINE | ID: mdl-37492219

ABSTRACT

Leishmaniasis is a neglected tropical disease endemic primarily to low- and middle-income countries, for which there has been inadequate development of affordable, safe, and efficacious therapies. Clinical manifestations of leishmaniasis range from self-healing skin lesions to lethal visceral infection with chances of relapse. Although treatments are available, secondary effects limit their use outside the clinic and negatively impact the quality of life of patients in endemic areas. Other non-medicinal treatments, such as thermotherapies, are limited to use in patients with cutaneous leishmaniasis but not with visceral infection. Recent studies shed light to mechanisms through which Leishmania can persist by hiding in cellular safe havens, even after chemotherapies. This review focuses on exploring the cellular niches that Leishmania parasites may be leveraging to persist within the host. Also, the cellular, metabolic, and molecular implications of Leishmania infection and how those could be targeted for therapeutic purposes are discussed. Other therapies, such as those developed against cancer or for manipulation of the ferroptosis pathway, are proposed as possible treatments against leishmaniasis due to their mechanisms of action. In particular, treatments that target hematopoietic stem cells and monocytes, which have recently been found to be necessary components to sustain the infection and provide a safe niche for the parasites are discussed in this review as potential field-deployable treatments against leishmaniasis.

9.
Parasite Immunol ; 45(7): e12984, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37183939

ABSTRACT

Leishmaniasis is considered as one of the 20 neglected tropical diseases. Current methods of leishmanial diagnosis depend on conventional laboratory-based techniques, which are time-consuming, costly and require special equipment and trained personnel. In this context, we aimed to provide an immuno field effect transistors (ImmunoFET) biosensor that matches the conventional standards for point-of-care (POC) monitoring and detection of Leishmania (L.) donovani/Leishmania major. Crude antigens prepared by repeated freeze thawing of L. donovani/L. major stationary phase promastigotes were used for ELISA and ImmunoFETs. Lesishmania-specific antigens were serially diluted in 1× PBS from a concentration of 106 -102 parasites/mL. A specific polyclonal antibody-based sandwich ELISA was established for the detection of Leishmania antigens. An immunoFET technology-based POC novel assay was constructed for the detection of Leishmania antigens. Interactions between antigen-antibody at the gate surface generate an electrical signal that can be measured by semiconductor field-effect principles. Sensitivity was considered and measured as the change in current divided by the initial current. The final L. donovani/L. major crude antigen protein concentrations were measured as 1.50 mg/mL. Sandwich ELISA against the Leishmania 40S ribosomal protein detected Leishmania antigens could detect as few as 100 L. donovani/L. major parasites. An immunoFET biosensor was constructed based on the optimization of aluminium gallium nitride/gallium nitride (AlGaN/GaN) surface oxidation methods. The device surface was composed by an AlGaN/GaN wafer with a 23 nm AlGaN barrier layer, a 2 µm GaN layer on the silicon carbide (SiC) substrate for Leishmania binding, and coated with a specific antibody against the Leishmania 40S ribosomal protein, which was successfully detected at concentrations from 106 to 102 parasites/mL in 1× PBS. At the concentration of 104 parasites, the immunoFETs device sensitivities were 13% and 0.052% in the sub-threshold regime and the saturation regime, respectively. Leishmania parasites were successfully detected by the ImmunoFET biosensor at a diluted concentration as low as 150 ng/mL. In this study, the developed ImmunoFET biosensor performed well. ImmunoFET biosensors can be used as an alternative diagnostic method to ELISA. Increasing the sensitivity and optimization of immuno-FET biosensors might allow earlier and faster detection of leishmaniasis.


Subject(s)
Leishmania donovani , Leishmania major , Leishmaniasis , Humans , Point-of-Care Systems , Leishmaniasis/parasitology , Ribosomal Proteins , Antibodies, Protozoan , Neglected Diseases
10.
NPJ Vaccines ; 8(1): 63, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37185599

ABSTRACT

Human infection with the protozoan parasite Trypanosoma cruzi causes Chagas disease for which there are no prophylactic vaccines. Cyclophilin 19 is a secreted cis-trans peptidyl isomerase expressed in all life stages of Trypanosoma cruzi. This protein in the insect stage leads to the inactivation of insect anti-parasitic peptides and parasite transformation whereas in the intracellular amastigotes it participates in generating ROS promoting the growth of parasites. We have generated a parasite mutant with depleted expression of Cyp19 by removal of 2 of 3 genes encoding this protein using double allelic homologous recombination. The mutant parasite line failed to replicate when inoculated into host cells in vitro or in mice indicating that Cyp19 is critical for infectivity. The mutant parasite line also fails to replicate in or cause clinical disease in immuno-deficient mice further validating their lack of virulence. Repeated inoculation of mutant parasites into immuno-competent mice elicits parasite-specific trypanolytic antibodies and a Th-1 biased immune response and challenge of mutant immunized mice with virulent wild-type parasites is 100% effective at preventing death from acute disease. These results suggest that parasite Cyp19 may be candidate for small molecule drug targeting and that the mutant parasite line may warrant further immunization studies for prevention of Chagas disease.

11.
NPJ Vaccines ; 7(1): 157, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463228

ABSTRACT

Leishmaniasis is one of the top neglected tropical diseases with significant morbidity and mortality in low and middle-income countries (LMIC). However, this disease is also spreading in the developed world. Currently, there is a lack of effective strategies to control this disease. Vaccination can be an effective measure to control leishmaniasis and has the potential to achieve disease elimination. Recently, we have generated centrin gene-deleted new world L. mexicana (LmexCen-/-) parasites using CRISPR/Cas9 and showed that they protect mice against a homologous L. mexicana infection that causes cutaneous disease. In this study, we tested whether LmexCen-/- parasites can also protect against visceral leishmaniasis caused by L. donovani in a hamster model. We showed that immunization with LmexCen-/- parasites is safe and does not cause lesions. Furthermore, such immunization conferred protection against visceral leishmaniasis caused by a needle-initiated L. donovani challenge, as indicated by a significant reduction in the parasite burdens in the spleen and liver as well as reduced mortality. Similar control of parasite burden was also observed against a sand fly mediated L. donovani challenge. Importantly, immunization with LmexCen-/- down-regulated the disease promoting cytokines IL-10 and IL-4 and increased pro-inflammatory cytokine IFN-γ resulting in higher IFN-γ/IL-10 and IFN-γ/IL4 ratios compared to non-immunized animals. LmexCen-/- immunization also resulted in long-lasting protection against L. donovani infection. Taken together, our study demonstrates that immunization with LmexCen-/- parasites is safe and efficacious against the Old World visceral leishmaniasis.

12.
Expert Opin Drug Deliv ; 19(11): 1505-1519, 2022 11.
Article in English | MEDLINE | ID: mdl-36222232

ABSTRACT

INTRODUCTION: Despite their effectiveness and indispensability, many drugs are poorly solvated in aqueous solutions. Over recent decades, the need for targeted drug delivery has led to the development of pharmaceutical formulations with enhanced lipid solubility to improve their delivery properties. Therefore, a dependable approach for administering lipid-soluble drugs needs to be developed. AREAS COVERED: The advent of 3D printing or additive manufacturing (AM) has revolutionized the development of medical devices, which can effectively enable the delivery of lipophilic drugs to the targeted tissues. This review focuses on the use of microneedles and iontophoresis for transdermal drug delivery. Microneedle arrays, inkjet printing, and fused deposition modeling have emerged as valuable approaches for delivering several classes of drugs. In addition, iontophoresis has been successfully employed for the effective delivery of macromolecular drugs. EXPERT OPINION: Microneedle arrays, inkjet printing, and fused deposition are potentially useful for many drug delivery applications; however, the clinical and commercial adoption rates of these technologies are relatively low. Additional efforts is needed to enable the pharmaceutical community to fully realize the benefits of these technologies.


Subject(s)
Drug Delivery Systems , Technology, Pharmaceutical , Administration, Cutaneous , Pharmaceutical Preparations , Lipids
13.
FASEB J ; 36(8): e22449, 2022 08.
Article in English | MEDLINE | ID: mdl-35839070

ABSTRACT

The presence of activated pancreatic stellate cells (PSCs) in the pancreatic ductal adenocarcinoma (PDAC) microenvironment plays a significant role in cancer progression. Macrophage migration inhibitory factor (MIF) is overexpressed in PDAC tissues and expressed by both cancer and stromal cells. The pathophysiological role of MIF in PDAC-associated fibroblasts or PSCs is yet to be elucidated. Here we report that the PSCs of mouse or cancer-associated fibroblast cells (CAFs) of human expresses MIF and its receptors, whose expression gets upregulated upon LPS or TNF-α stimulation. In vitro functional experiments showed that MIF significantly conferred a survival advantage to CAFs/PSCs upon growth factor deprivation. Genetic or pharmacological inhibition of MIF also corroborated these findings. Further, co-injection of mouse pancreatic cancer cells with PSCs isolated from Mif-/- or Mif+/+ mice confirmed the pro-survival effect of MIF in PSCs and also demonstrated the pro-tumorigenic role of MIF expressed by CAFs in vivo. Differential gene expression analysis and in vitro mechanistic studies indicated that MIF expressed by activated CAFs/PSCs confers a survival advantage to these cells by suppression of interferon pathway induced p53 dependent apoptosis.


Subject(s)
Apoptosis , Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Macrophage Migration-Inhibitory Factors , Pancreatic Neoplasms , Animals , Apoptosis/genetics , Apoptosis/physiology , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor/metabolism , Cell Movement , Cell Proliferation , Humans , Interferons/metabolism , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/genetics , Macrophage Migration-Inhibitory Factors/metabolism , Mice , Pancreatic Neoplasms/pathology , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Pancreatic Neoplasms
14.
Br J Cancer ; 127(4): 624-636, 2022 09.
Article in English | MEDLINE | ID: mdl-35595823

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a significant problem and is frequently resistant to current treatments. STAT1 is important in anti-tumour immune responses against HNSCC. However, the role of STAT1 expression by tumour cells and its regulation during HNSCC is unclear. METHODS: We determined the effects of STAT1 inhibition on tumour development and immunity in CAL27 and UMSCC22A HNSCC cell lines in vitro and in a HNSCC carcinogen-induced model in vivo. RESULTS: STAT1 siRNA knockdown in human HNSCC cells impaired their proliferation and expression of the immunosuppressive marker PD-L1. Stat1-deficient mice displayed increased oral lesion incidence and multiplicity during tumour carcinogenesis in vivo. Immunosuppressive markers PD-1 in CD8+ T cells and PD-L1 in monocytic MDSCs and macrophages were reduced in oral tumours and draining lymph nodes of tumour-bearing Stat1-deficient mice. However, STAT1 was required for anti-tumour functions of T cells during HNSCC in vivo. Finally, we identified TRIM24 to be a negative regulator of STAT1 that plays a similar tumorigenic function to STAT1 in vitro and thus may be a potential target when treating HNSCC. CONCLUSION: Our findings indicate that STAT1 activity plays an important role in tumorigenicity and immunosuppression during HNSCC development.


Subject(s)
B7-H1 Antigen , Head and Neck Neoplasms , Animals , B7-H1 Antigen/genetics , Carcinogenesis , Carrier Proteins , Cell Line, Tumor , Head and Neck Neoplasms/genetics , Humans , Immunosuppression Therapy , Mice , STAT1 Transcription Factor/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Tumor Microenvironment
15.
Pathogens ; 11(4)2022 Apr 02.
Article in English | MEDLINE | ID: mdl-35456106

ABSTRACT

Leishmaniasis, caused by an infection of the Leishmania protozoa, is a neglected tropical disease and a major health problem in tropical and subtropical regions of the world, with approximately 350 million people worldwide at risk and 2 million new cases occurring annually. Current treatments for leishmaniasis are not highly efficacious and are associated with high costs, especially in low- and middle-income endemic countries, and high toxicity. Due to a surge in the incidence of leishmaniases worldwide, the development of new strategies such as a prophylactic vaccine has become a high priority. However, the ability of Leishmania to undermine immune recognition has limited our efforts to design safe and efficacious vaccines against leishmaniasis. Numerous antileishmanial vaccine preparations based on DNA, subunit, and heat-killed parasites with or without adjuvants have been tried in several animal models but very few have progressed beyond the experimental stage. However, it is known that people who recover from Leishmania infection can be protected lifelong against future infection, suggesting that a successful vaccine requires a controlled infection to develop immunologic memory and subsequent long-term immunity. Live attenuated Leishmania parasites that are non-pathogenic and provide a complete range of antigens similarly to their wild-type counterparts could evoke such memory and, thus, would be effective vaccine candidates. Our laboratory has developed several live attenuated Leishmania vaccines by targeted centrin gene disruptions either by homologous recombination or, more recently, by using genome editing technologies involving CRISPR-Cas9. In this review, we focused on the sequential history of centrin gene-deleted Leishmania vaccine development, along with the characterization of its safety and efficacy. Further, we discussed other major considerations regarding the transition of dermotropic live attenuated centrin gene-deleted parasites from the laboratory to human clinical trials.

16.
Front Immunol ; 13: 864031, 2022.
Article in English | MEDLINE | ID: mdl-35419001

ABSTRACT

Leishmaniasis is a vector-borne parasitic disease transmitted through the bite of a sand fly with no available vaccine for humans. Recently, we have developed a live attenuated Leishmania major centrin gene-deleted parasite strain (LmCen-/- ) that induced protection against homologous and heterologous challenges. We demonstrated that the protection is mediated by IFN (Interferon) γ-secreting CD4+ T-effector cells and multifunctional T cells, which is analogous to leishmanization. In addition, in a leishmanization model, skin tissue-resident memory T (TRM) cells were also shown to be crucial for host protection. In this study, we evaluated the generation and function of skin TRM cells following immunization with LmCen-/- parasites and compared those with leishmanization. We show that immunization with LmCen-/- generated skin CD4+ TRM cells and is supported by the induction of cytokines and chemokines essential for their production and survival similar to leishmanization. Following challenge with wild-type L. major, TRM cells specific to L. major were rapidly recruited and proliferated at the site of infection in the immunized mice. Furthermore, upon challenge, CD4+ TRM cells induce higher levels of IFNγ and Granzyme B in the immunized and leishmanized mice than in non-immunized mice. Taken together, our studies demonstrate that the genetically modified live attenuated LmCen-/- vaccine generates functional CD4+ skin TRM cells, similar to leishmanization, that may play a crucial role in host protection along with effector T cells as shown in our previous study.


Subject(s)
Leishmania major , Leishmaniasis Vaccines , Parasites , Animals , Immunity , Interferon-gamma , Leishmaniasis Vaccines/genetics , Memory T Cells , Mice , Skin , Trimethoprim, Sulfamethoxazole Drug Combination
17.
NPJ Vaccines ; 7(1): 32, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35236861

ABSTRACT

Leishmaniasis is a neglected protozoan disease affecting over 12 million people globally with no approved vaccines for human use. New World cutaneous leishmaniasis (CL) caused by L. mexicana is characterized by the development of chronic non-healing skin lesions. Using the CRISPR/Cas9 technique, we have generated live attenuated centrin knockout L. mexicana (LmexCen-/-) parasites. Centrin is a cytoskeletal protein important for cellular division in eukaryotes and, in Leishmania, is required only for intracellular amastigote replication. We have investigated the safety and immunogenicity characteristics of LmexCen-/- parasites by evaluating their survival and the cytokine production in bone-marrow-derived macrophages (BMDMs) and dendritic cells (BMDCs) in vitro. Our data shows that LmexCen-/- amastigotes present a growth defect, which results in significantly lower parasitic burdens and increased protective cytokine production in infected BMDMs and BMDCs, compared to the wild type (WT) parasites. We have also determined the safety and efficacy of LmexCen-/- in vivo using experimental murine models of L. mexicana. We demonstrate that LmexCen-/- parasites are safe and do not cause lesions in susceptible mouse models. Immunization with LmexCen-/- is also efficacious against challenge with WT L. mexicana parasites in genetically different BALB/c and C57BL/6 mouse models. Vaccinated mice did not develop cutaneous lesions, displayed protective immunity, and showed significantly lower parasitic burdens at the infection site and draining lymph nodes compared to the control group. Overall, we demonstrate that LmexCen-/- parasites are safe and efficacious against New World cutaneous leishmaniasis in pre-clinical models.

19.
Nanomedicine ; 40: 102490, 2022 02.
Article in English | MEDLINE | ID: mdl-34748957

ABSTRACT

The basic aim of the study was to develop and evaluate the triple drug loaded cationic nano-vesicles (cNVs), where miltefosine was used as a replacement of surfactant (apart from its anti-leishmanial role), in addition to meglumine antimoniate (MAM) and imiquimod (Imq), as a combination therapy for the topical treatment of cutaneous leishmaniasis (CL). The optimized formulation was nano-sized (86.2 ±â€¯2.7 nm) with high entrapment efficiency (63.8 ±â€¯2.1% (MAM) and 81.4 ±â€¯2.3% (Imq)). In-vivo skin irritation assay showed reduced irritation potential and a decrease in the cytotoxicity of cNVs as compared to conventional NVs (having sodium deoxycholate as a surfactant). A synergistic interaction between drugs was observed against intracellular amastigotes, whereas the in-vivo antileishmanial study presented a significant reduction in the parasitic burden. The results suggested the potential of surfactant free, triple drug loaded cNVs as an efficient vehicle for the safe topical treatment of CL.


Subject(s)
Antiprotozoal Agents , Leishmania , Leishmaniasis, Cutaneous , Administration, Topical , Antiprotozoal Agents/pharmacology , Humans , Leishmaniasis, Cutaneous/drug therapy , Surface-Active Agents
20.
Cell Biochem Biophys ; 80(1): 45-61, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34387841

ABSTRACT

Our earlier in vitro and in vivo studies have revealed that the phytosterol, pentalinonsterol (cholest-4,20,24-trien-3-one) (PEN), isolated from the roots of Pentalinon andrieuxii, possesss immunomodulatory properties in macrophages and dendritic cells. Leishmaniasis, caused by the infection of Leishmania spp. (a protozoan parasite), is emerging as the second-leading cause of mortality among the tropical diseases and there is an unmet need for a pharmacological intervention of leishmaniasis. Given the beneficial immunomodulatory actions and lipophilic properties of PEN, the objective of this study was to elucidate the mechanism(s) of action of the immunomodulatory action(s) of PEN in macrophages through the modulation of phospholipase A2 (PLA2) activity that might be crucial in the antileishmanial action of PEN. Therefore, in this study, we investigated whether PEN would modulate the activity of PLA2 in RAW 264.7 macrophages and mouse bone marrow-derived primary macrophages (BMDMs) in vitro and further determined how the upstream PLA2 activation would regulate the downstream cytokine release in the macrophages. Our current results demonstrated that (i) PEN induced PLA2 activation (arachidonic acid release) in a dose- and time-dependent manner that was regulated upstream by the mitogen-activated protein kinases (MAPKs); (ii) the PEN-induced activation of PLA2 was attenuated by the cPLA2-specific pharmacological inhibitors; and (iii) the cPLA2-specific pharmacological inhibitors attenuated the release of inflammatory cytokines from the macrophages. For the first time, our current study demonstrated that PEN exhibited its immunomodulatory actions through the activation of cPLA2 in the macrophages, which potentially could be used in the development of a pharmacological intervention against leishmaniasis.


Subject(s)
Phytosterols , Animals , Macrophages/metabolism , Mice , Phospholipases A2/metabolism , Phytosterols/metabolism , Sterols/metabolism , Sterols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...