Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
FEBS J ; 283(6): 1168-79, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26797772

ABSTRACT

Tissue-nonspecific alkaline phosphatase (TNSALP) is a membrane glycoprotein with a proposed role in bone mineralization. Indeed, mutations in TNSALP have been identified in patients with hypophosphatasia (HPP), a genetic disease characterized by hypomineralization of bone and teeth and a deficiency in serum ALP activity. TNSALP has five potential N-glycosylation sites at N140, N230, N271, N303 and N430 by standard nomenclature. A mutation at one of these sites, N430, was recently detected in a patient with infantile HPP. Using site-directed mutagenesis, we demonstrated that TNSALP has five N-glycans in transfected COS-1 cells and that individual single N-glycan deletion mutants of TNSALP retain the dimeric structure required for ALP activity, excluding the possibility that any single N-glycan plays a vital role in the structure and function of TNSALP. However, we found that TNSALP (N430Q) and TNSALP (N430E) mutants, but not a TNSALP (N430D) mutant, failed to form dimers. The TNSALP (N430S) mutant linked to infantile HPP was glycosylation-defective and unable to dimerise, similar to TNSALP (N430Q) and TNSALP (N430E) mutants; therefore, TNSALP (N430S) was established as a severe allele without strong ALP activity. By contrast to individual single N-glycan deletion mutants, TNSALP devoid of all five N-glycans was present to a much lesser extent than wild-type TNSALP in transfected cells, possibly reflecting its instability. A comprehensive analysis of a series of multiple N-glycan depletion mutants in TNSALP revealed that three N-glycans on N230, N271 and N303 were the minimal requirement for the structure and function of TNSALP and a prerequisite for its stable expression in a cell.


Subject(s)
Alkaline Phosphatase/chemistry , Alkaline Phosphatase/genetics , Hypophosphatasia/enzymology , Hypophosphatasia/genetics , Mutant Proteins/chemistry , Mutant Proteins/genetics , Alkaline Phosphatase/metabolism , Amino Acid Substitution , Animals , Binding Sites/genetics , COS Cells , Chlorocebus aethiops , Gene Expression Regulation, Enzymologic , Glycosylation , Humans , Infant , Mutagenesis, Site-Directed , Mutant Proteins/metabolism , Mutation, Missense , Protein Processing, Post-Translational , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
2.
Biochim Biophys Acta ; 1822(4): 581-8, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22266140

ABSTRACT

Hypophosphatasia (HPP), a rare genetic disease characterized by reduced serum alkaline phosphatase (ALP) activity and failure in bone and tooth mineralization, is caused by mutations in tissue-nonspecific ALP (TNSALP) gene. Two missense mutations (C201Y and C489S, standardized nomenclature) of TNSALP, involved in intra-chain disulfide bonds, were reported in patients diagnosed with perinatal HPP (Taillandier A. et al. Hum. Mutat. 13 (1999) 171-172, Hum. Mutat. 15 (2000) 293). To investigate the role of the disulfide bond in TNSALP, we expressed TNSALP (C201Y) and TNSALP (C489S) in COS-1 cells transiently. Compared with the wild-type enzyme [TNSALP (W)], both the TNSALP mutants exhibited a diminished ALP activity in the cells, where a 66kDa immature form was predominant with a marginal amount of a 80kDa mature form of TNSALP. Detailed studies on Tet-On CHO established cell line expressing TNSALP (W) or TNSALP (C201Y) showed that the 66kDa form of TNSALP (C201Y) exists as a monomer in contrast to a dimer of TNSALP (W). Only a small fraction of the TNSALP (C201Y) reached cell surface as the 80kDa mature form, though most of the 66kDa form was found to be endo-ß-N-acetylglucosaminidase H sensitive and rapidly degraded in proteasome following polyubiquitination. Collectively, these results indicate not only that the intra-subunit disulfide bonds are crucial for TNSALP to properly fold and assemble into the dimeric enzyme, but also that the development of HPP associated with TNSALP (C201Y) or TNSALP (C489S) is attributed to decreased cell surface appearance of the functional enzyme.


Subject(s)
Alkaline Phosphatase/metabolism , Disulfides/metabolism , Hypophosphatasia/genetics , Mutation , Animals , Blotting, Western , COS Cells , Chlorocebus aethiops , Humans , Hypophosphatasia/metabolism , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...