Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell J ; 25(5): 354-362, 2023 May 28.
Article in English | MEDLINE | ID: mdl-37300297

ABSTRACT

Colorectal cancer (CRC) is the third most prevalent cancer with the second-highest mortality rate worldwide. microRNAs (miRNAs) of cancer-derived exosomes have shown promising diagnosis potential. Recent studies have shown the metastatic potential of a specific group of microRNAs called metastasis. Therefore, down-regulation of miRNAs at the transcriptional level can reduce metastasis probability. The aim of this bioinformatics research is targeting of miRNAs precursors using CRISPR-C2c2 (Cas13a) technique. The C2c2 (Cas13a) enzyme structure was downloaded from the RCSB database, the sequence miRNAs and their precursors were collected from miRbase. The crRNAs were designed and evaluated for their specificity by using CRISPR-RT server. The modeling 3D structure of the designed crRNA was performed by RNAComposer server. Finally, HDOCK server was used to perform molecular docking to evaluate docked molecules' energy level and position. The crRNAs designed for miR-1280, miR-206, miR-195, miR- 371a, miR-34a, miR-27a, miR-224, miR-99b, miR-877, miR-495 and miR-384 that showed high structural similarity with the situation observed in normal and appropriate orientation was obtained. Despite high specificity, the correct orientation was not established in the case of crRNAs that designed to target miR-145, miR-378a, miR-199a, miR- 320a and miR-543. The predicted interactions between crRNAs and Cas13a enzyme showed that crRNAs have a strong potential to inhibit metastasis. Therefore, crRNAs may be considered as an effective anticancer agent for further research in drug development.

2.
Biotechnol Bioeng ; 118(10): 3691-3705, 2021 10.
Article in English | MEDLINE | ID: mdl-34241908

ABSTRACT

Adoptive cell immunotherapy with chimeric antigen receptor T (CAR-T) cell has brought a revolutionary means of treatment for aggressive diseases such as hematologic malignancies and solid tumors. Over the last decade, the United States Food and Drug Administration (FDA) approved five types of CAR-T cell therapies for hematologic malignancies, including Idecabtagene vicleucel (Abecma), Lisocabtagene maraleucel (Breyanzi), Brexucabtagene autoleucel (Tecartus), Tisagenlecleucel (Kymriah), and Axicabtagene ciloleucel (Yescarta). Despite outstanding results gained from different clinical trials, CAR-T cell therapy is not free from side effects and toxicities, and needs careful investigations and improvements. Gene-editing technology, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system, has emerged as a promising tool to address some of the CAR-T therapy hurdles. Using CRISPR/Cas9 technology, CAR expression as well as other cellular pathways can be modified in various ways to enhance CAR-T cells antitumor function and persistence in immunosuppressive tumor microenvironment. CRISPR/Cas9 technology can also be used to decrease CAR-T cell toxicities and side effects. Hereby, we discussed the practical challenges and hurdles related to the accuracy, efficiency, efficacy, safety, and delivery of CRISPR/Cas9 technology to the genetically engineered-T cells. Combining of these two state-of-the-art technologies, CRISPR/Cas9 and CAR-T cells, the field of oncology has an extraordinary opportunity to enter a new era of immunotherapy, which offers novel therapeutic options for different types of tumors.


Subject(s)
Adoptive Transfer , CRISPR-Cas Systems , Hematologic Neoplasms/therapy , Receptors, Chimeric Antigen , Hematologic Neoplasms/genetics , Humans , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/therapeutic use
3.
Microb Pathog ; 146: 104221, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32360523

ABSTRACT

BACKGROUND: Based on world health organization (WHO) recommend, drug resistance assay should be performed in initial of treatment and after treatment for administering and monitoring of anti-retroviral regime in HIV-1 infected patients. MATERIAL AND METHOD: NGS analyses were performed on forty-one plasma samples from HIV-1 affected patients using the Sentosa SQ HIV genotyping assay (Vela-Diagnostics, Germany). This system comprises a semi-automated Ion torrent based platform and the sequencing results were analyzed based on ANRS, REGA and Stanford drug resistance algorithms. Phylogenetic analysis was analyzed based on https://comet.lih.lu database as well as MEGA5 Software. RESULTS: Drug resistances were identified in thirty-three samples (80%) out of forty-one samples. The Phylogenetic analysis results showed that CRF-35AD (94%) and subtypes B (2.4%) and G (2.4%) were dominant subtypes in this study. NRTI and NNRTI associated dominant mutations were M184I/V and K103 N.High-level resistance to lamivudine (3 TC) and Emtricitabine (FTC) were detected in 34.3% of patients while 53.1% were resistant to Efavirenz (EFV) and Nevirapine (NVP). The Protease inhibitor (PI) minor and major mutations were not reported but more than 95% of samples had polymorphisms mutation in K20R, M36I, H69K, L89 M positions. These mutations are subtype dependent and completely are absent in subtype B virus. The secondary mutations were reported in positions of E157Q, S230 N, and T97A of integrase gene and four samples represent low-level resistance to integrase strand transfer inhibitor (INSTI). CONCLUSIONS: This is the first preliminary evaluation of HIV-1 drug resistance mutation (DRM) by using the Sentosa SQ HIV Genotyping Assay in Iran. The NGS represent a promising tool for the accurate detection of DRMs of CRF-35AD that is dominant subtype in Iranian HIV-1 infected population and for the first time revealed HIV-1 subtype G in Iranian population. In the present study polymorphic mutation in the position of K20R, M36I, H69K, L89 M were properly reported in CRF35AD that is dominant in Iranian HIV patients.


Subject(s)
Drug Resistance, Viral/genetics , HIV-1/genetics , High-Throughput Nucleotide Sequencing/methods , Adolescent , Adult , Anti-HIV Agents/pharmacology , CD4 Lymphocyte Count , Drug Resistance, Multiple, Viral/genetics , Female , Genes, Viral , Genotype , HIV Infections/drug therapy , HIV Infections/virology , HIV Integrase/genetics , HIV Reverse Transcriptase/genetics , Humans , Male , Middle Aged , Mutation , Phylogeny , Polymorphism, Single Nucleotide , Viral Load/drug effects , Young Adult
4.
Oncotarget ; 9(20): 15350-15364, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-29632649

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common liver cancer and second leading cause of cancer related death worldwide. Most HCCs occur in a damaged cirrhotic background and it may be difficult to discriminate between regenerative nodules and early HCCs. No dependable molecular biomarker exists for the early detection of HCC. MicroRNAs (miRNAs) have attracted attention as potential blood-based biomarkers. To identify circulating miRNAs with diagnostic potential in HCC, we performed preliminary RNAseq studies on plasma samples from a small set of HCC patients, cirrhotic patients and healthy controls. Then, out of the identified miRNAs, we investigated miR-101-3p, miR-106b-3p, miR-1246 and miR-411-5p in plasma of independent HCC patients' cohorts. The use of droplet digital PCR (ddPCR) confirmed the aberrant levels of these miRNAs. The diagnostic performances of each miRNA and their combinations were measured using Receiver Operating Characteristic (ROC) curve analyses: a classifier consisting of miR-101-3p, miR-1246 and miR-106b-3p produced the best diagnostic precision in plasma of HCC vs. cirrhotic patients (AUC = 0.99). A similar performance was found when the levels of miRNAs of HCC patients were compared to healthy controls (AUC = 1.00). We extended the analyses of the same miRNAs to serum samples. In serum of HCC vs. cirrhotic patients, the combination of miR-101-3p and miR-106b-3p exhibited the best diagnostic accuracy with an AUC = 0.96. Thus, circulating miR-101-3p, miR-106b-3p and miR-1246, either individually or in combination, exhibit a considerable potential value as diagnostic biomarkers of HCC.

5.
Oncotarget ; 7(34): 54174-54182, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27527866

ABSTRACT

Long noncoding RNAs (lncRNAs) are non-proten-coding transcripts of more than 200 nucleotides generated by RNA polymerase II and their expressions are tightly regulated in cell type specific- and/or cellular differential stage specific- manner. MIAT, originally isolated as a candidate gene for myocardial infarction, encodes lncRNA (termed MIAT). Here, we determined the expression level of MIAT in established leukemia/lymphoma cell lines and found its upregulation in lymphoid but not in myeloid cell lineage with mature B cell phenotype. MIAT expression level was further determined in chronic lymphocytic leukemias (CLL), characterized by expansion of leukemic cells with mature B phenotype, to demonstrate relatively high occurrence of MIAT upregulation in aggressive form of CLL carrying either 17p-deletion, 11q-deletion, or Trisomy 12 over indolent form carrying 13p-deletion. Furthermore, we show that MIAT constitutes a regulatory loop with OCT4 in malignant mature B cell, as was previously reported in mouse pulripotent stem cell, and that both molecules are essential for cell survival.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/genetics , RNA, Long Noncoding/physiology , Apoptosis , Cell Line, Tumor , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Octamer Transcription Factor-3/physiology , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...