Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 13(13): 3674-3687, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35432906

ABSTRACT

We report a fast-track computationally driven discovery of new SARS-CoV-2 main protease (Mpro) inhibitors whose potency ranges from mM for the initial non-covalent ligands to sub-µM for the final covalent compound (IC50 = 830 ± 50 nM). The project extensively relied on high-resolution all-atom molecular dynamics simulations and absolute binding free energy calculations performed using the polarizable AMOEBA force field. The study is complemented by extensive adaptive sampling simulations that are used to rationalize the different ligand binding poses through the explicit reconstruction of the ligand-protein conformation space. Machine learning predictions are also performed to predict selected compound properties. While simulations extensively use high performance computing to strongly reduce the time-to-solution, they were systematically coupled to nuclear magnetic resonance experiments to drive synthesis and for in vitro characterization of compounds. Such a study highlights the power of in silico strategies that rely on structure-based approaches for drug design and allows the protein conformational multiplicity problem to be addressed. The proposed fluorinated tetrahydroquinolines open routes for further optimization of Mpro inhibitors towards low nM affinities.

2.
Molecules ; 26(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072262

ABSTRACT

Modern structure-property models are widely used in chemistry; however, in many cases, they are still a kind of a "black box" where there is no clear path from molecule structure to target property. Here we present an example of deep learning usage not only to build a model but also to determine key structural fragments of ligands influencing metal complexation. We have a series of chemically similar lanthanide ions, and we have collected data on complexes' stability, built models, predicting stability constants and decoded the models to obtain key fragments responsible for complexation efficiency. The results are in good correlation with the experimental ones, as well as modern theories of complexation. It was shown that the main influence on the constants had a mutual location of the binding centers.

3.
Mol Pharm ; 16(10): 4282-4291, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31437001

ABSTRACT

Chemical space is impractically large, and conventional structure-based virtual screening techniques cannot be used to simply search through the entire space to discover effective bioactive molecules. To address this shortcoming, we propose a generative adversarial network to generate, rather than search, diverse three-dimensional ligand shapes complementary to the pocket. Furthermore, we show that the generated molecule shapes can be decoded using a shape-captioning network into a sequence of SMILES enabling directly the structure-based de novo drug design. We evaluate the quality of the method by both structure- (docking) and ligand-based [quantitative structure-activity relationship (QSAR)] virtual screening methods. For both evaluation approaches, we observed enrichment compared to random sampling from initial chemical space of ZINC drug-like compounds.


Subject(s)
Drug Design , Drug Discovery , Models, Chemical , Neural Networks, Computer , Proteins/chemistry , Small Molecule Libraries/chemistry , Humans , Ligands , Molecular Conformation , Proteins/metabolism , Quantitative Structure-Activity Relationship , Small Molecule Libraries/metabolism
4.
J Chem Inf Model ; 59(3): 1182-1196, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30785751

ABSTRACT

Here we show that Generative Topographic Mapping (GTM) can be used to explore the latent space of the SMILES-based autoencoders and generate focused molecular libraries of interest. We have built a sequence-to-sequence neural network with Bidirectional Long Short-Term Memory layers and trained it on the SMILES strings from ChEMBL23. Very high reconstruction rates of the test set molecules were achieved (>98%), which are comparable to the ones reported in related publications. Using GTM, we have visualized the autoencoder latent space on the two-dimensional topographic map. Targeted map zones can be used for generating novel molecular structures by sampling associated latent space points and decoding them to SMILES. The sampling method based on a genetic algorithm was introduced to optimize compound properties "on the fly". The generated focused molecular libraries were shown to contain original and a priori feasible compounds which, pending actual synthesis and testing, showed encouraging behavior in independent structure-based affinity estimation procedures (pharmacophore matching, docking).


Subject(s)
Deep Learning , Drug Design , Catalytic Domain , Drug Evaluation, Preclinical , Ligands , Molecular Docking Simulation , Receptor, Adenosine A2A/chemistry , Receptor, Adenosine A2A/metabolism , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology
5.
Biomolecules ; 8(4)2018 10 30.
Article in English | MEDLINE | ID: mdl-30380783

ABSTRACT

Chemical autoencoders are attractive models as they combine chemical space navigation with possibilities for de novo molecule generation in areas of interest. This enables them to produce focused chemical libraries around a single lead compound for employment early in a drug discovery project. Here, it is shown that the choice of chemical representation, such as strings from the simplified molecular-input line-entry system (SMILES), has a large influence on the properties of the latent space. It is further explored to what extent translating between different chemical representations influences the latent space similarity to the SMILES strings or circular fingerprints. By employing SMILES enumeration for either the encoder or decoder, it is found that the decoder has the largest influence on the properties of the latent space. Training a sequence to sequence heteroencoder based on recurrent neural networks (RNNs) with long short-term memory cells (LSTM) to predict different enumerated SMILES strings from the same canonical SMILES string gives the largest similarity between latent space distance and molecular similarity measured as circular fingerprints similarity. Using the output from the code layer in quantitative structure activity relationship (QSAR) of five molecular datasets shows that heteroencoder derived vectors markedly outperforms autoencoder derived vectors as well as models built using ECFP4 fingerprints, underlining the increased chemical relevance of the latent space. However, the use of enumeration during training of the decoder leads to a marked increase in the rate of decoding to different molecules than encoded, a tendency that can be counteracted with more complex network architectures.


Subject(s)
Algorithms , Models, Molecular , Neural Networks, Computer , Probability , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...