Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Insects ; 15(5)2024 May 19.
Article in English | MEDLINE | ID: mdl-38786925

ABSTRACT

Bees play a crucial role as pollinators, contributing significantly to ecosystems. However, the honeybee population faces challenges such as global warming, pesticide use, and pathogenic microorganisms. Promoting bee growth using several approaches is therefore crucial for maintaining their roles. To this end, the bacterial microbiota is well-known for its native role in supporting bee growth in several respects. Maximizing the capabilities of these microorganisms holds the theoretical potential to promote the growth of bees. Recent advancements have made it feasible to achieve this enhancement through the application of genetic engineering. In this review, we present the roles of gut symbionts in promoting bee growth and collectively summarize the engineering approaches that would be needed for future applications. Particularly, as the engineering of bee gut symbionts has not been advanced, the dominant gut symbiotic bacteria Snodgrassella alvi and Gilliamella apicola are the main focus of the paper, along with other dominant species. Moreover, we propose engineering strategies that will allow for the improvement in bee growth with listed gene targets for modification to further encourage the use of engineered gut symbionts to promote bee growth.

2.
Sci Rep ; 14(1): 9322, 2024 04 23.
Article in English | MEDLINE | ID: mdl-38654034

ABSTRACT

Dengue virus (DENV) infection can lead to severe outcomes through a virus-induced cytokine storm, resulting in vascular leakage and inflammation. An effective treatment strategy should target both virus replication and cytokine storm. This study identified Kaempferia galanga L. (KG) extract as exhibiting anti-DENV activity. The major bioactive compound, ethyl-p-methoxycinnamate (EPMC), significantly reduced DENV-2 infection, virion production, and viral protein synthesis in HepG2 and A549 cells, with half-maximal effective concentration (EC50) values of 22.58 µM and 6.17 µM, and impressive selectivity indexes (SIs) of 32.40 and 173.44, respectively. EPMC demonstrated efficacy against all four DENV serotypes, targeting the replication phase of the virus life cycle. Importantly, EPMC reduced DENV-2-induced cytokines (IL-6 and TNF-α) and chemokines (RANTES and IP-10), as confirmed by immunofluorescence and immunoblot analyses, indicating inhibition of NF-κB activation. EPMC's role in preventing excessive inflammatory responses suggests it as a potential candidate for dengue treatment. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness for EPMC were predicted using SwissADME and ProTox II servers, showing good drug-like properties without toxicity. These findings highlight KG extract and EPMC as promising candidates for future anti-dengue therapeutics, offering a dual-action approach by inhibiting virus replication and mitigating inflammatory reactions.


Subject(s)
Antiviral Agents , Cinnamates , Dengue Virus , Dengue , Inflammation , NF-kappa B , Virus Replication , Humans , A549 Cells , Antiviral Agents/pharmacology , Cinnamates/pharmacology , Cytokines/metabolism , Dengue/drug therapy , Dengue/virology , Dengue Virus/drug effects , Hep G2 Cells , Inflammation/drug therapy , NF-kappa B/antagonists & inhibitors , NF-kappa B/drug effects , NF-kappa B/metabolism , Signal Transduction/drug effects , Virus Replication/drug effects
3.
Microb Cell Fact ; 23(1): 80, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481222

ABSTRACT

BACKGROUND: Spathaspora passalidarum is a yeast with the highly effective capability of fermenting several monosaccharides in lignocellulosic hydrolysates, especially xylose. However, this yeast was shown to be sensitive to furfural released during pretreatment and hydrolysis processes of lignocellulose biomass. We aimed to improve furfural tolerance in a previously isolated S. passalidarum CMUWF1-2, which presented thermotolerance and no detectable glucose repression, via adaptive laboratory evolution (ALE). RESULTS: An adapted strain, AF2.5, was obtained from 17 sequential transfers of CMUWF1-2 in YPD broth with gradually increasing furfural concentration. Strain AF2.5 could tolerate higher concentrations of furfural, ethanol and 5-hydroxymethyl furfuraldehyde (HMF) compared with CMUWF1-2 while maintaining the ability to utilize glucose and other sugars simultaneously. Notably, the lag phase of AF2.5 was 2 times shorter than that of CMUWF1-2 in the presence of 2.0 g/l furfural, which allowed the highest ethanol titers to be reached in a shorter period. To investigate more in-depth effects of furfural, intracellular reactive oxygen species (ROS) accumulation was observed and, in the presence of 2.0 g/l furfural, AF2.5 exhibited 3.41 times less ROS accumulation than CMUWF1-2 consistent with the result from nuclear chromatins diffusion, which the cells number of AF2.5 with diffuse chromatins was also 1.41 and 1.24 times less than CMUWF1-2 at 24 and 36 h, respectively. CONCLUSIONS: An enhanced furfural tolerant strain of S. passalidarum was achieved via ALE techniques, which shows faster and higher ethanol productivity than that of the wild type. Not only furfural tolerance but also ethanol and HMF tolerances were improved.


Subject(s)
Saccharomyces cerevisiae , Saccharomycetales , Xylose , Furaldehyde , Reactive Oxygen Species , Furylfuramide , Fermentation , Glucose , Ethanol , Chromatin
4.
Front Bioeng Biotechnol ; 11: 1296216, 2023.
Article in English | MEDLINE | ID: mdl-38026874

ABSTRACT

Microalgae have emerged as a promising, next-generation sustainable resource with versatile applications, particularly as expression platforms and green cell factories. They possess the ability to overcome the limitations of terrestrial plants, such non-arable land, water scarcity, time-intensive growth, and seasonal changes. However, the heterologous expression of interested genes in microalgae under heterotrophic cultivation (dark mode) remains a niche area within the field of engineering technologies. In this study, the green microalga, Chlorella sorokiniana AARL G015 was chosen as a potential candidate due to its remarkable capacity for rapid growth in complete darkness, its ability to utilize diverse carbon sources, and its potential for wastewater treatment in a circular bioeconomy model. The aims of this study were to advance microalgal genetic engineering via dark cultivation, thereby positioning the strain as promising dark-host for expressing heterologous genes to produce high-value phytochemicals and ingredients for food and feed. To facilitate comprehensive screening based on resistance, eleven common antibiotics were tested under heterotrophic condition. As the most effective selectable markers for this strain, G418, hygromycin, and streptomycin exhibited growth inhibition rates of 98%, 93%, and 92%, respectively, ensuring robust long-term transgenic growth. Successful transformation was achieved through microalgal cell cocultivation with Agrobacterium under complete darkness verified through the expression of green fluorescence protein and ß-glucuronidase. In summary, this study pioneers an alternative dark-host microalgal platform, using, Chlorella, under dark mode, presenting an easy protocol for heterologous gene transformation for microalgal host, devoid of the need for expensive equipment and light for industrial production. Furthermore, the developed genetic transformation methodology presents a sustainable way for production of high-value nutrients, dietary supplements, nutraceuticals, proteins and pharmaceuticals using heterotrophic microalgae as an innovative host system.

5.
Front Microbiol ; 14: 1143770, 2023.
Article in English | MEDLINE | ID: mdl-36937274

ABSTRACT

A metabolic model, representing all biochemical reactions in a cell, is a prerequisite for several approaches in systems biology used to explore the metabolic phenotype of an organism. Despite the use of Euglena in diverse industrial applications and as a biological model, there is limited understanding of its metabolic network capacity. The unavailability of the completed genome data and the highly complex evolution of Euglena are significant obstacles to the reconstruction and analysis of its genome-scale metabolic model. In this mini-review, we discuss the current state and challenges of metabolic network reconstruction in Euglena gracilis. We have collated and present the available relevant data for the metabolic network reconstruction of E. gracilis, which could be used to improve the quality of the metabolic model of E. gracilis. Furthermore, we deliver the potential applications of the model in metabolic engineering. Altogether, it is supposed that this mini-review would facilitate the investigation of metabolic networks in Euglena and further lay out a direction for model-assisted metabolic engineering.

6.
Adv Biochem Eng Biotechnol ; 183: 145-169, 2023.
Article in English | MEDLINE | ID: mdl-36764955

ABSTRACT

Fatty acids and their derivatives are highly valuable chemicals that can be produced through chemical or enzymatic processes using plant lipids. This may compete with human food sources. Therefore, there has been an urge to create a new method for synthesizing these chemicals. One approach is to use microbial cells, specifically cyanobacteria, as a factory platform. Engineering may need to be implemented in order to allow a cost-competitive production and to enable a production of a variety of different fatty acids and derivatives. In this chapter, we explain in details the importance of fatty acids and their derivatives, including fatty aldehydes, fatty alcohols, hydrocarbons, fatty acid methyl esters, and hydroxy fatty acids. The production of these chemicals using cyanobacterial native metabolisms together with strategies to engineer them are also explained. Moreover, recent examples of fatty acid and fatty acid derivative production from engineered cyanobacteria are gathered and reported. Commercial opportunities to manufacture fatty acids and derivatives are also discussed in this chapter. Altogether, it is clear that fatty acids and their derivatives are important chemicals, and with recent advancements in genetic engineering, a cyanobacterial platform for bio-based production is feasible. However, there are regulations and guidelines in place for the use of genetically modified organisms (GMOs) and some further developments are still needed before commercialization can be reached.


Subject(s)
Cyanobacteria , Humans , Cyanobacteria/genetics , Cyanobacteria/metabolism , Fatty Acids/metabolism , Hydrocarbons/metabolism , Genetic Engineering , Fatty Alcohols/metabolism , Metabolic Engineering/methods
7.
Life (Basel) ; 12(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36362867

ABSTRACT

In this study, we aim to investigate the efficiency of crude oil bioremediation through composting and culture-assisted composting. First, forty-eight bacteria were isolated from a crude oil-contaminated soil, and the isolate with the highest crude oil degradation activity, identified as Pseudomonas aeruginosa, was selected. The bioremediation was then investigated and compared between crude oil-contaminated soil (S), the contaminated soil composted with fruit-based waste (SW), and the contaminated soil composted with the same waste with the addition of the selected bacterium (SWB). Both compost-based methods showed high efficiencies of crude oil bioremediation (78.1% and 83.84% for SW and SWB, respectively). However, only a slight difference between the treatments without and with the addition of P. aeruginosa was observed. To make a clear understanding of this point, bacterial communities throughout the 4-week bioremediation period were analyzed. It was found that the community dynamics between both composted treatments were similar, which corresponds with their similar bioremediation efficiencies. Interestingly, Pseudomonas disappeared from the system after one week, which suggests that this genus was not the key degrader or only involved in the early stage of the process. Altogether, our results elaborate that fruit-based composting is an effective approach for crude oil bioremediation.

8.
Microorganisms ; 10(11)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36363739

ABSTRACT

Hydrogen sulfide (H2S) is a toxic and corrosive component that commonly occurs in biogas. In this study, H2S removal from swine-waste biogas using sulfur-oxidizing Paracoccus versutus CM1 immobilized in porous glass (PG) and polyurethane foam (PUF) biofilters was investigated. Bacterial compositions in the biofilters were also determined using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The biofilters were first tested on a laboratory scale under three space velocities (SV): 20, 30, and 40 h−1. Within 24 h, at an SV of 20 h−1, PG and PUF biofilters immobilized with P. versutus CM1 removed 99.5% and 99.7% of H2S, respectively, corresponding to the elimination capacities (EC) of 83.5 and 86.2 gm−3 h−1. On a pilot scale, with the horizontal PG-P. versutus CM1 biofilter operated at an SV of 30 h−1, a removal efficiency of 99.7% and a maximum EC of 113.7 gm−3 h−1 were achieved. No reduction in methane content in the outlet biogas was observed under these conditions. The PCR-DGGE analysis revealed that Paracoccus, Acidithiobacillus, and Thiomonas were the predominant bacterial genera in the biofilters, which might play important roles in H2S removal. This PG−P. versutus CM1 biofiltration system is highly efficient for H2S removal from swine-waste biogas.

9.
Biology (Basel) ; 11(8)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36009852

ABSTRACT

Synthetic biology is a principle that aims to create new biological systems with particular functions or to redesign the existing ones through bioengineering. Therefore, this principle is often utilized as a tool to put the knowledge learned to practical use in actual fields. However, there is still a great deal of information remaining to be found, and this limits the possible utilization of synthetic biology, particularly on the topic that is the focus of the present work-heavy metal bio-removal. In this work, we aim to construct a comprehensive library of putative proteins that might support heavy metal bio-removal. Hypothetical proteins were discovered from Chlorella and Scenedesmus genomes and extensively annotated. The protein structures of these putative proteins were also modeled through Alphafold2. Although a portion of this workflow has previously been demonstrated to annotate hypothetical proteins from whole genome sequences, the adaptation of such steps is yet to be done for library construction purposes. We also demonstrated further downstream steps that allow a more accurate function prediction of the hypothetical proteins by subjecting the models generated to structure-based annotation. In conclusion, a total of 72 newly discovered putative proteins were annotated with ready-to-use predicted structures available for further investigation.

10.
ACS Synth Biol ; 10(6): 1417-1428, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34003632

ABSTRACT

1-Octanol has gained interest as a chemical precursor for both high and low value commodities including fuel, solvents, surfactants, and fragrances. By harnessing the power from sunlight and CO2 as carbon source, cyanobacteria has recently been engineered for renewable production of 1-octanol. The productivity, however, remained low. In the present work, we report efforts to further improve the 1-octanol productivity. Different N-terminal truncations were evaluated on three thioesterases from different plant species, resulting in several candidate thioesterases with improved activity and selectivity toward octanoyl-ACP. The structure/function trials suggest that current knowledge and/or state-of-the art computational tools are insufficient to determine the most appropriate cleavage site for thioesterases in Synechocystis. Additionally, by tuning the inducer concentration and light intensity, we further improved the 1-octanol productivity, reaching up to 35% (w/w) carbon partitioning and a titer of 526 ± 5 mg/L 1-octanol in 12 days. Long-term cultivation experiments demonstrated that the improved strain can be stably maintained for at least 30 days and/or over ten times serial dilution. Surprisingly, the improved strain was genetically stable in contrast to earlier strains having lower productivity (and hence a reduced chance of reaching toxic product concentrations). Altogether, improved enzymes and environmental conditions (e.g., inducer concentration and light intensity) substantially increased the 1-octanol productivity. When cultured under continuous conditions, the bioproduction system reached an accumulative titer of >3.5 g/L 1-octanol over close to 180 days.


Subject(s)
1-Octanol/metabolism , Metabolic Engineering/methods , Synechocystis/genetics , Synechocystis/metabolism , 1-Octanol/analysis , Biofuels , Fatty Acids, Nonesterified/analysis , Fatty Acids, Nonesterified/biosynthesis , Light , Plasmids/genetics , Synechocystis/radiation effects , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism
11.
Proc Natl Acad Sci U S A ; 117(3): 1404-1413, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31915296

ABSTRACT

Bio-based production technologies may complement or replace petroleum-based production of chemicals, but they face a number of technical challenges, including product toxicity and/or water insolubility. Plants and microorganisms naturally biosynthesize chemicals that often are converted into derivatives with reduced toxicity or enhanced solubility. Inspired by this principle, we propose a bioderivatization strategy for biotechnological chemicals production, defined as purposeful biochemical derivatization of intended target molecules. As proof of principle, the effects of hydrophobic (e.g., esterification) and hydrophilic (e.g., glycosylation) bioderivatization strategies on the biosynthesis of a relatively toxic and poorly soluble chemical, 1-octanol, were evaluated in Escherichia coli and Synechocystis sp. PCC 6803. The 1-octanol pathway was first optimized to reach product titers at which the host displayed symptoms of toxicity. Solvent overlay used to capture volatile products partially masked product toxicity. Regardless of whether solvent overlay was used, most strains with bioderivatization had a higher molar product titer and product yield, as well as improved cellular growth and glucose consumption, compared with strains without bioderivatization. The positive effect on bioproduction was observed with both the hydrophobic and hydrophilic strategies. Interestingly, in several combinations of genotype/induction strength, bioderivatization had a positive effect on productivity without any apparent effect on growth. We attribute this to enhanced product solubility in the aqueous or solvent fraction of the bioreactor liquid phase (depending on the derivative and medium used), with consequent enhanced product removal. Overall, under most conditions, a benefit of bioproduction was observed, and the bioderivatization strategy could be considered for other similar chemicals as well.


Subject(s)
1-Octanol/metabolism , Industrial Microbiology/methods , Biodegradation, Environmental , Escherichia coli/growth & development , Escherichia coli/metabolism , Synechocystis/growth & development , Synechocystis/metabolism
12.
BMC Microbiol ; 18(1): 73, 2018 07 13.
Article in English | MEDLINE | ID: mdl-30005621

ABSTRACT

BACKGROUND: Efficient bioconversion of lignocellulosic biomass to bioethanol is one of key challenges in the situation of increasing bioethanol demand. The ethanologenic microbes for such conversion are required to possess abilities of utilization of various sugars including xylose and arabinose in lignocellulosic biomass. As required additional characteristics, there are a weak or no glucose repression that allows cells to simultaneously utilize various sugars together with glucose and thermotolerance for fermentation at high temperatures, which has several advantages including reduction of cooling cost. Spathaspora passalidarum ATCC MYA-4345, a type strains, isolated previously have mainly of these abilities or characteristics but its thermotolerance is not so strong and its glucose repression on xylose utilization is revealed. RESULTS: Newly isolated S. passalidarum CMUWF1-2 was found to have a high ability to produce ethanol from various sugars included in lignocellulosic biomass at high temperatures. The strain achieved ethanol yields of 0.43 g, 0.40 g and 0.20 g ethanol/g xylose at 30 °C, 37 °C and 40 °C, respectively. Interestingly, no significant glucose repression was observed in experiments with mixed sugars, being consistent with the strong resistance to 2-deoxyglucose, and antimycin A showed no effect on its growth in xylose medium. Moreover, the strain was tolerant to glucose and ethanol at concentrations up to 35.0% (w/v) and 8.0% (v/v), respectively. CONCLUSIONS: S. passalidarum CMUWF1-2 was shown to achieve efficient production of ethanol from various sugars and a high ethanol yield from xylose with little accumulation of xylitol. The strain also exhibited stress-resistance including thermotolerance and no detectable glucose repression as beneficial characteristics. Therefore, S. passalidarum CMUWF1-2 has remarkable potential for conversion of lignocellulosic biomass to bioethanol.


Subject(s)
Ethanol/metabolism , Glucose/metabolism , Saccharomycetales/metabolism , Thermotolerance/physiology , Xylose/metabolism , Biomass , Catabolite Repression , Culture Media , Fermentation , Glucose/chemistry , Lignin/metabolism , Saccharomycetales/genetics , Saccharomycetales/growth & development , Saccharomycetales/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...