Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 179: 104986, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31443868

ABSTRACT

BACKGROUND: Spike sorting is a basic step for implantable neural interfaces. With the growing number of channels, the process should be computationally efficient, automatic,robust and applicable on implantable circuits. NEW METHOD: The proposed method is a combination of fully-automatic offline and online processes. It introduces a novel method for automatically determining a data-aware spike detection threshold, computationally efficient spike feature extraction, automatic optimal cluster number evaluation and verification coupled with Self-Organizing Maps to accurately determine cluster centroids. The system has the ability of unsupervised online operation after initial fully-automatic offline training. The prime focus of this paper is to fully-automate the complete spike detection and sorting pipeline, while keeping the accuracy high. RESULTS: The proposed system is simulated on two well-known datasets. The automatic threshold improves detection accuracies significantly( > 15%) as compared to the most common detector. The system is able to effectively handle background multi-unit activity with improved performance. COMPARISON: Most of the existing methods are not fully-automatic; they require supervision and expert intervention at various stages of the pipeline. Secondly, existing works focus on foreground neural activity. Recent research has highlighted importance of background multi-unit activity, and this work is amongst the first efforts that proposes and verifies an automatic methodology to effectively handle them as well. CONCLUSION: This paper proposes a fully-automatic, computationally efficient system for spike sorting for both single-unit and multi-unit spikes. Although the scope of this work is design and verification through computer simulations, the system has been designed to be easily transferable into an integrated hardware form.


Subject(s)
Action Potentials , Implantable Neurostimulators/statistics & numerical data , Algorithms , Brain-Computer Interfaces/statistics & numerical data , Computer Simulation , Electrodes, Implanted/statistics & numerical data , Humans , Models, Neurological , Neurons/physiology , Online Systems , Pattern Recognition, Automated/statistics & numerical data , Signal Processing, Computer-Assisted , Unsupervised Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...