Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794561

ABSTRACT

We have developed an innovative thin-film nanocomposite membrane that contains cellulose acetate (CA) with small amounts of TiO2-decorated graphene oxide (GO) (ranging from 0.5 wt.% to 2 wt.%) sandwiched between two polytetrafluoroethylene (PTFE)-like thin films. The PTFE-like films succeeded in maintaining the bulk porosity of the support while increasing the thermal and chemical robustness of the membrane and boosting the catalytic activity of TiO2 nanoparticles. The membranes exhibited a specific chemical composition and bonding, with predominant carbon-oxygen bonds from CA and GO in the bulk, and carbon-fluorine bonds on their PTFE-like coated sides. We have also tested the membranes' photocatalytic activities on azithromycin-containing wastewaters, demonstrating excellent efficiency with more than 80% degradation for 2 wt.% TiO2-decorated GO in the CA-GO-TiO2/PTFE-like membranes. The degradation of the azithromycin formulation occurs in two steps, with reaction rates being correlated to the amount of GO-TiO2 in the membranes.

2.
Materials (Basel) ; 16(24)2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38138651

ABSTRACT

This study shows an easy way to use electrochemistry and plasma layering to make Cobalt-Blue-TiO2 nanotubes that are better at catalysing reactions. Once a titanium plate has been anodized, certain steps are taken to make oxygen vacancies appear inside the TiO2 nanostructures. To find out how the Co deposition method changed the final catalyst's properties, it was put through electrochemical tests (to find the charge transfer resistance and flat band potential) and optical tests (to find the band gap and Urbach energy). The catalysts were also described in terms of their shape, ability to stick to surfaces, and ability to inhibit bacteria. When Cobalt was electrochemically deposited to Blue-TiO2 nanotubes, a film with star-shaped structures was made that was hydrophilic and antibacterial. The band gap energy went down from 3.04 eV to 2.88 eV and the Urbach energy went up from 1.171 eV to 3.836 eV using this electrochemical deposition method. Also, photodegradation tests with artificial doxycycline (DOX) water were carried out to see how useful the study results would be in real life. These extra experiments were meant to show how the research results could be used in real life and what benefits they might have. For the bacterial tests, both gram-positive and gram-negative bacteria were used, and BT/Co-E showed the best response. Additionally, photodegradation and photoelectrodegradation experiments using artificial doxycycline (DOX) water were conducted to determine the practical relevance of the research findings. The synergistic combination of light and applied potential leads to 70% DOX degradation after 60 min of BT/Co-E irradiation.

3.
Polymers (Basel) ; 14(6)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35335413

ABSTRACT

In the field of bioengineering, depending on the required application, the attachment of various biological entities to the biomaterial is either favored or needs to be prevented. Therefore, different surfaces modification strategies were developed in combination with the characteristics of the materials. The present contribution reports on the use of the specific surface property of a thermoresponsive polymer poly(N-isopropylacrylamide) pNIPAAM obtained by spin coating in combination with plasma treatment for tuning cell behavior on treated polymeric surfaces. Topographical information for the plasma-treated pNIPAAM coatings obtained by Atomic Force Microscopy (AFM) measurements evidenced a more compact surface for Ar treatment due to combined etching and redeposition, while for oxygen, a clear increase of pores diameter is noticed. The chemical surface composition as determined by X-ray Photoelectron Spectroscopy showed the specific modifications induced by plasma treatment, namely strong oxidation for oxygen plasma treatment illustrated by eight times increase of O-C=O contribution and respectively an increase of C-N/O=C-N bonds in the case of ammonia plasma treatment. Structural information provided by FTIR spectroscopy reveals a significant increase of the carboxylic group upon argon and mostly oxygen plasma treatment and the increase in width and intensity of the amide-related groups for the ammonia plasma treatment. The biological investigations evidenced that L929 fibroblast cells viability is increased by 25% upon plasma treatment, while the cell attachment is up to 2.8 times higher for the oxygen plasma-treated surface compared to the initial spin-coated pNIPAAM. Moreover, the cell detachment process proved to be up to 2-3 times faster for the oxygen and argon plasma-treated surfaces and up to 1.5 times faster for the ammonia-treated surface. These results show the versatility of plasma treatment for inducing beneficial chemical modifications of pNIPAAM surfaces that allows the tuning of cellular response for improving the attachment-detachment process in view of tissue engineering.

4.
Int J Mol Sci ; 22(23)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34884908

ABSTRACT

Despite the technological progress of the last decade, dental caries is still the most frequent oral health threat in children and adults alike. Such a condition has multiple triggers and is caused mainly by enamel degradation under the acidic attack of microbial cells, which compose the biofilm of the dental plaque. The biofilm of the dental plaque is a multispecific microbial consortium that periodically develops on mammalian teeth. It can be partially removed through mechanical forces by individual brushing or in specialized oral care facilities. Inhibition of microbial attachment and biofilm formation, as well as methods to strengthen dental enamel to microbial attack, represent the key factors in caries prevention. The purpose of this study was to elaborate a cold plasma-based method in order to modulate microbial attachment and biofilm formation and to improve the retention of fluoride (F-) in an enamel-like hydroxyapatite (HAP) model sample. Our results showed improved F retention in the HAP model, which correlated with an increased antimicrobial and antibiofilm effect. The obtained cold plasma with a dual effect exhibited through biofilm modulation and enamel strengthening through fluoridation is intended for dental application, such as preventing and treating dental caries and enamel deterioration.


Subject(s)
Bacterial Physiological Phenomena/drug effects , Durapatite/chemistry , Fluorides/pharmacology , Plasma Gases/pharmacology , Atmospheric Pressure , Biofilms/drug effects , Escherichia coli/drug effects , Escherichia coli/physiology , Fluorides/chemistry , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Plasma Gases/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
5.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769117

ABSTRACT

A series of coatings from poly(ethylene-co-vinyl acetate) (EVA) were obtained using the matrix-assisted pulsed laser evaporation (MAPLE) technique. By changing the process parameters, i.e., laser fluence and EVA co-polymer concentration in the target, coatings with various morphologies and topographies were produced. The evaluation of the film structure was based on an analysis of optical and atomic force microscopy and profilometry measurements. A detailed chemical structure investigation, conducted based on Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) spectra, revealed that although the general structure was preserved, some alterations of ethylene (Et) and vinyl acetate (VAc) blocks took place. The most noticeable change was in the ester group that was transformed into ketone and carboxyl groups; nevertheless, some changes in the aliphatic main chain were also present. The chemical structure changes in EVA coatings took place regardless of the process parameters used. The use of chloroform as a solvent to dissolve the EVA copolymer was indicated as a possible reason of the changes as well as the tendency of EVA macromolecules to form clusters. Nevertheless, due to low level of structure alteration, it has been shown that the MAPLE technique can be successfully used to obtain coatings from polymers with more complex structures, which are soluble in a limited number of solvents.


Subject(s)
Polyvinyls/chemistry
6.
Nanomaterials (Basel) ; 11(4)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805134

ABSTRACT

We present hybrid nanomaterial architectures, consisting of carbon nanowalls (CNW) templates decorated with tungsten oxide nanoparticles, synthesized using a mechanism based on tungsten oxide sublimation, vapor transport, followed by vapor condensation, in the absence or presence of plasma. The key steps in the decoration mechanism are the sublimation of tungsten oxides, when are exposed in vacuum at high temperature (800 °C), and their redeposition on colder surfaces (400-600 °C). The morphology and chemical composition of the hybrid architectures, as obtained from Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy, are discussed with respect to substrate nature and the physical conditions of synthesis. We pointed out that the decoration process is strongly dependent on the temperature of the CNW templates and plasma presence. Thus, the decoration process performed with plasma was effective for a wider range of template temperatures, in contrast with the decoration process performed without plasma. The results are useful for applications using the sensing and photochemical properties of tungsten oxides, and have also relevance for fusion technology, tungsten walls erosion and material redeposition being widely observed in fusion machines.

7.
Int J Mol Sci ; 21(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287433

ABSTRACT

We report on the successful preparation of wet dressings hydrogels based on Chitosan-Poly(N-Vinyl-Pyrrolidone)-Poly(ethylene glycol)-Poly(acrylic acid) and Poly(ethylene oxide) by e-beam cross-linking in weakly acidic media, to be used for rapid healing and pain release of infected skin wounds. The structure and compositions of hydrogels investigated according to sol-gel and swelling studies, network parameters, as well as FTIR and XPS analyses showed the efficient interaction of the hydrogel components upon irradiation, maintaining the bonding environment while the cross-linking degree increasing with the irradiation dose and the formation of a structure with the mesh size in the range 11-67 nm. Hydrogels with gel fraction above 85% and the best swelling properties in different pH solutions were obtained for hydrogels produced with 15 kGy. The hydrogels are stable in the simulated physiological condition of an infected wound and show appropriate moisture retention capability and the water vapor transmission rate up to 272.67 g m-2 day-1, to ensure fast healing. The hydrogels proved to have a significant loading capacity of ibuprofen (IBU), being able to incorporate a therapeutic dose for the treatment of severe pains. Simultaneously, IBU was released up to 25% in the first 2h, having a release maximum after 8 h.


Subject(s)
Acrylic Resins/chemistry , Bandages , Chitosan/chemistry , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Radiation , Algorithms , Biocompatible Materials/chemistry , Dose-Response Relationship, Drug , Models, Theoretical , Phase Transition/radiation effects , Spectrum Analysis , Steam , Temperature
8.
Polymers (Basel) ; 12(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32717998

ABSTRACT

Polymer-based nanocomposites have recently received considerable attention due to their unique properties, which makes them feasible for applications in optics, sensors, energy, life sciences, etc. The present work focuses on the synthesis of nanocomposites consisting of a polytetrafluorethylene-like matrix in which metallic nano-silver are embedded, by using multiple magnetron plasmas. By successively exposing the substrate to separate RF magnetrons using as combination of target materials polytetrafluorethylene (PTFE) and silver, individual control of each deposition process is insured, allowing obtaining of structures in which silver nanoparticles are entrapped in-between two PTFE layers with given thicknesses. The topographical and morphological characteristics investigated by means of Scanning Electron Microscopy and Atomic Force Microscopy techniques evidenced the very presence of Ag nanoparticles with typical dimension 7 nm. The chemical composition at various depositing steps was evaluated through X-ray Photoelectron Spectroscopy. We show that the presence of the top PTFE layer prevents silver oxidation, while its thickness allows the tailoring of optical properties, as evidenced by spectroellipsometry. The appearance of chemical bonds between silver atoms and PTFE atoms at interfaces is observed, pointing out that despite of pure physical deposition processes, a chemical interaction between the polymeric matrix and metal is promoted by plasma.

9.
Sci Rep ; 8(1): 15473, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30341312

ABSTRACT

Submerged liquid plasma (SLP) is a new and promising method to modify powder materials. Up to now, this technique has been mostly applied to carbonaceous materials, however, SLP shows great potential as a low-cost and environmental-friendly method to modify cellulose. In this work we demonstrate the modification of microcrystalline cellulose (MCC) by applying the SLP combined with ultrasonication treatments. The plasma generated either in an inert (argon) or reactive (argon: oxygen or argon:nitrogen) gas was used in MCC dispersions in water or acetonitrile:water mixtures. An enhanced defibrillation of MCC has been observed following the application of SLP. Furthermore, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy have been applied to investigate the surface functionalization of MCC with oxygen or nitrogen moieties. Depending on the plasma treatment applied, poly (3-hydroxybutyrate) composites fabricated with the plasma modified cellulose fibers showed better thermal stability and mechanical properties than pristine PHB. This submerged liquid plasma processing method offers a unique approach for the activation of cellulose for defibrillation and functionalization, aiming towards an improved reinforcing ability of biopolymers.


Subject(s)
Cellulose/chemistry , Plasma Gases/chemistry , Butyrates/chemistry , Cellulose/ultrastructure , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Surface Properties , Temperature , Thermogravimetry , X-Ray Diffraction
10.
Molecules ; 21(12)2016 Dec 13.
Article in English | MEDLINE | ID: mdl-27983598

ABSTRACT

Using plasma in conjunction with fluorinated compounds is widely encountered in material processing. We discuss several plasma techniques for surface fluorination: deposition of fluorocarbon thin films either by magnetron sputtering of polytetrafluoroethylene targets, or by plasma-assisted chemical vapor deposition using tetrafluoroethane as a precursor, and modification of carbon nanowalls by plasma treatment in a sulphur hexafluoride environment. We showed that conformal fluorinated thin films can be obtained and, according to the initial surface properties, superhydrophobic surfaces can be achieved.


Subject(s)
Fluorine/chemistry , Plasma Gases , Wettability , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Spectroscopy, Fourier Transform Infrared , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...