Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neurophysiol Clin ; 36(4): 207-18, 2006.
Article in English | MEDLINE | ID: mdl-17095410

ABSTRACT

OBJECTIVES: Several types of lasers are available for eliciting laser evoked responses (LEPs). In order to understand advantages and drawbacks of each one, and to use it properly, it is important that the pattern of skin heating is known and duly considered. This study was aimed at assessing the skin temperature during and immediately after irradiation with pulses by Nd:YAP and CO(2) lasers. MATERIALS AND METHODS: The back of the non-dominant hand was irradiated in 8 subjects. Temperatures were measured by a fast analogical pyrometer (5 ms response time). Stimuli were tested on natural colour (white) and blackened skin. RESULTS: Nd:YAP pulses yielded temperatures that were correlated with pulse energy, but not with pulse duration; much higher temperatures were obtained irradiating blackened skin than white skin (ranges 100-194 degrees C vs 35-46 degrees C). Temperature decay was extremely slow in white skin, reaching its basal value in more than 30 s. CO(2) pulses delivered with power of 3W and 6W yielded temperatures of 69-87 degrees C on white skin, and 138-226 degrees C on blackened skin. Temperature decay was very fast (4-8 ms). CONCLUSIONS: Differences in peak temperatures and decay times between lasers and tested conditions depend on energy and volume of heated skin. The highest temperatures are reached with lesser degree of penetration, as in the case of CO(2) laser and blackened skin. Taking into account the temperature decay time of the skin, the minimum interstimulus interval to get reliable LEPs should be no less than 10 s for Nd:YAP and 100 ms for CO(2) laser. Another important practical consequence of the heating pattern is that the Nd:YAP pulses will activate warmth receptors more easily than CO(2).


Subject(s)
Lasers , Skin Temperature/physiology , Carbon Dioxide , Evoked Potentials/physiology , Hand/physiology , Humans , Infrared Rays , Pain Measurement , Skin Pigmentation
2.
Clin EEG Neurosci ; 37(2): 121-34, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16733943

ABSTRACT

A continuum from neuronal cellular/subcellular properties to system processes appears to exist in many instances and to allow privileged approaches in neuroscience and neuropharmacology research. Brain signals and the cholinergic and GABAergic systems, in vivo and in vitro evidence from studies on the retina, or the "gamma band" oscillations in neuron membrane potential/spiking rate and neuronal assemblies are examples in this respect. However, spontaneous and stimulus-event-related signals at any location and time point reflect brain state conditions that depend on neuromodulation, neurotransmitter interaction, hormones (e.g., glucocorticois, ACTH, estrogens) and neuroendocrine interaction at different levels of complexity, as well as on the spontaneous or experimentally-induced changes in metabolism (e.g., glucose, ammonia), blood flow, pO2, pCO2, acid/base balance, K activity, etc., that occur locally or systemically. Any of these factors can account for individual differences and/or changes over time that often are (or need to be) neglected in pharmaco-EEG studies or are dealt with statistically and by controlling the experimental conditions. As a result, the electrophysiological effects of neuroactive drugs are to an extent non-specific and require adequate modeling and precise correlation with independent parameters (e.g., drug kinetics, vigilance, hormonal profile or metabolic status, etc.) to avoid biased results in otherwise controlled studies.


Subject(s)
Brain/physiology , Electroencephalography/methods , Electrophysiology/trends , Neuropharmacology/trends , Neurosciences/trends , Brain/drug effects , Evoked Potentials/drug effects , Evoked Potentials/physiology , Humans
3.
Adv Space Res ; 33(8): 1347-51, 2004.
Article in English | MEDLINE | ID: mdl-15803626

ABSTRACT

ALTEA-MICE will supplement the ALTEA project on astronauts and provide information on the functional visual impairment possibly induced by heavy ions during prolonged operations in microgravity. Goals of ALTEA-MICE are: (1) to investigate the effects of heavy ions on the visual system of normal and mutant mice with retinal defects; (2) to define reliable experimental conditions for space research; and (3) to develop animal models to study the physiological consequences of space travels on humans. Remotely controlled mouse setup, applied electrophysiological recording methods, remote particle monitoring, and experimental procedures were developed and tested. The project has proved feasible under laboratory-controlled conditions comparable in important aspects to those of astronauts' exposure to particle in space. Experiments are performed at the Brookhaven National Laboratories [BNL] (Upton, NY, USA) and the Gesellschaft für Schwerionenforschung mbH [GSI]/Biophysik (Darmstadt, FRG) to identify possible electrophysiological changes and/or activation of protective mechanisms in response to pulsed radiation. Offline data analyses are in progress and observations are still anecdotal. Electrophysiological changes after pulsed radiation are within the limits of spontaneous variability under anesthesia, with only indirect evidence of possible retinal/cortical responses. Immunostaining showed changes (e.g. increased expression of FGF2 protein in the outer nuclear layer) suggesting a retinal stress reaction to high-energy particles of potential relevance in space.


Subject(s)
Heavy Ions , Retina/radiation effects , Vision, Ocular/radiation effects , Animals , Dark Adaptation , Electrophysiology , Mice , Mice, Mutant Strains , Models, Animal , Particle Accelerators , Photic Stimulation , Radiation Dosage , Research Design , Space Flight
SELECTION OF CITATIONS
SEARCH DETAIL
...