Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Comput Neurosci ; 13: 92, 2019.
Article in English | MEDLINE | ID: mdl-32038210

ABSTRACT

Recent research in neuroscience indicates the importance of tripartite synapses and gliotransmission mediated by astrocytes in neuronal system modulation. Although the astrocyte and neuronal network functions are interrelated, they are fundamentally different in their signaling patterns and, possibly, the time scales at which they operate. However, the exact nature of gliotransmission and the effect of the tripartite synapse function at the network level are currently elusive. In this paper, we propose a computational model of interactions between an astrocyte network and a neuron network, starting from tripartite synapses and spanning to a joint network level. Our model focuses on a two-dimensional setup emulating a mixed in vitro neuron-astrocyte cell culture. The model depicts astrocyte-released gliotransmitters exerting opposing effects on the neurons: increasing the release probability of the presynaptic neuron while hyperpolarizing the post-synaptic one at a longer time scale. We simulated the joint networks with various levels of astrocyte contributions and neuronal activity levels. Our results indicate that astrocytes prolong the burst duration of neurons, while restricting hyperactivity. Thus, in our model, the effect of astrocytes is homeostatic; the firing rate of the network stabilizes to an intermediate level independently of neuronal base activity. Our computational model highlights the plausible roles of astrocytes in interconnected astrocytic and neuronal networks. Our simulations support recent findings in neurons and astrocytes in vivo and in vitro suggesting that astrocytic networks provide a modulatory role in the bursting of the neuronal network.

2.
J Neurosci Methods ; 308: 354-365, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30213547

ABSTRACT

BACKGROUND: Spike trains of multiple neurons can be analyzed following the summed population (SP) or the labeled line (LL) hypothesis. Responses to external stimuli are generated by a neuronal population as a whole or the individual neurons have encoding capacities of their own. The SPIKE-distance estimated either for a single, pooled spike train over a population or for each neuron separately can serve to quantify these responses. NEW METHOD: For the SP case we compare three algorithms that search for the most discriminative subpopulation over all stimulus pairs. For the LL case we introduce a new algorithm that combines neurons that individually separate different pairs of stimuli best. RESULTS: The best approach for SP is a brute force search over all possible subpopulations. However, it is only feasible for small populations. For more realistic settings, simulated annealing clearly outperforms gradient algorithms with only a limited increase in computational load. Our novel LL approach can handle very involved coding scenarios despite its computational ease. COMPARISON WITH EXISTING METHODS: Spike train distances have been extended to the analysis of neural populations interpolating between SP and LL coding. This includes parametrizing the importance of distinguishing spikes being fired in different neurons. Yet, these approaches only consider the population as a whole. The explicit focus on subpopulations render our algorithms complimentary. CONCLUSIONS: The spectrum of encoding possibilities in neural populations is broad. The SP and LL cases are two extremes for which our algorithms provide correct identification results.


Subject(s)
Action Potentials/physiology , Models, Neurological , Neurons , Pattern Recognition, Automated/methods , Algorithms , Animals , Computer Simulation , Data Interpretation, Statistical , Humans
3.
J Neurosci Methods ; 299: 22-33, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29462713

ABSTRACT

BACKGROUND: It is commonly assumed in neuronal coding that repeated presentations of a stimulus to a coding neuron elicit similar responses. One common way to assess similarity are spike train distances. These can be divided into spike-resolved, such as the Victor-Purpura and the van Rossum distance, and time-resolved, e.g. the ISI-, the SPIKE- and the RI-SPIKE-distance. NEW METHOD: We use independent steady-rate Poisson processes as surrogates for spike trains with fixed rate and no timing information to address two basic questions: How does the sensitivity of the different spike train distances to temporal coding depend on the rates of the two processes and how do the distances deal with very low rates? RESULTS: Spike-resolved distances always contain rate information even for parameters indicating time coding. This is an issue for reasonably high rates but beneficial for very low rates. In contrast, the operational range for detecting time coding of time-resolved distances is superior at normal rates, but these measures produce artefacts at very low rates. The RI-SPIKE-distance is the only measure that is sensitive to timing information only. COMPARISON WITH EXISTING METHODS: While our results on rate-dependent expectation values for the spike-resolved distances agree with Chicharro et al. (2011), we here go one step further and specifically investigate applicability for very low rates. CONCLUSIONS: The most appropriate measure depends on the rates of the data being analysed. Accordingly, we summarize our results in one table that allows an easy selection of the preferred measure for any kind of data.


Subject(s)
Action Potentials , Models, Neurological , Neurons , Animals , Data Interpretation, Statistical , Humans , Poisson Distribution , Time Factors
4.
J Neurosci Methods ; 287: 25-38, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28583477

ABSTRACT

BACKGROUND: Measures of spike train synchrony are widely used in both experimental and computational neuroscience. Time-scale independent and parameter-free measures, such as the ISI-distance, the SPIKE-distance and SPIKE-synchronization, are preferable to time scale parametric measures, since by adapting to the local firing rate they take into account all the time scales of a given dataset. NEW METHOD: In data containing multiple time scales (e.g. regular spiking and bursts) one is typically less interested in the smallest time scales and a more adaptive approach is needed. Here we propose the A-ISI-distance, the A-SPIKE-distance and A-SPIKE-synchronization, which generalize the original measures by considering the local relative to the global time scales. For the A-SPIKE-distance we also introduce a rate-independent extension called the RIA-SPIKE-distance, which focuses specifically on spike timing. RESULTS: The adaptive generalizations A-ISI-distance and A-SPIKE-distance allow to disregard spike time differences that are not relevant on a more global scale. A-SPIKE-synchronization does not any longer demand an unreasonably high accuracy for spike doublets and coinciding bursts. Finally, the RIA-SPIKE-distance proves to be independent of rate ratios between spike trains. COMPARISON WITH EXISTING METHODS: We find that compared to the original versions the A-ISI-distance and the A-SPIKE-distance yield improvements for spike trains containing different time scales without exhibiting any unwanted side effects in other examples. A-SPIKE-synchronization matches spikes more efficiently than SPIKE-synchronization. CONCLUSIONS: With these proposals we have completed the picture, since we now provide adaptive generalized measures that are sensitive to firing rate only (A-ISI-distance), to timing only (ARI-SPIKE-distance), and to both at the same time (A-SPIKE-distance).


Subject(s)
Action Potentials , Signal Processing, Computer-Assisted , Animals , Cerebral Cortex/physiology , Microelectrodes , Neurons/physiology , Patch-Clamp Techniques , Periodicity , Rats, Wistar , Thalamus/physiology , Time Factors , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...