Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22269889

ABSTRACT

PurposeCompared to nasopharyngeal/oropharyngeal swabs, non-invasive saliva samples have enormous potential for scalability and routine population screening of SARS-CoV-2. In this study, we are investigating the efficacy of saliva samples relative to nasopharyngeal/oropharyngeal swabs for use as a direct source for the RT-PCR based SARS-CoV-2 detection. MethodsPaired nasopharyngeal/oropharyngeal swabs and saliva samples were collected from suspected positive SARS-CoV-2 patients and tested using RT-PCR. Generalised linear models were used to investigate factors that explain result agreement. Further, we used simulations to evaluate the effectiveness of saliva-based screening in restricting the spread of infection in a large campus such as an educational institution. ResultsWe observed 75.4% overall result agreement. Prospective positive samples stored for three or more days showed a drastic reduction in the probability of result agreement. We observed 83% result agreement and 74.5% test sensitivity in samples processed and tested within two days of collection. Our simulations suggest that a test with 75% sensitivity, but high daily capacity can be very effective in limiting the size of infection clusters in a workspace. Guided by these results, we successfully implemented a saliva-based screening in the Bangalore Life Sciences Cluster (BLiSC) campus. ConclusionThese results suggest that saliva may be a viable sample source for SARS-CoV-2 surveillance if samples are processed immediately. We strongly recommend the implementation of saliva-based screening strategies for large workplaces and in schools, as well as for population-level screening and routine surveillance as we learn to live with the SARS-CoV-2 virus.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-422529

ABSTRACT

Many viruses utilize the host endo-lysosomal network to infect cells. Tracing the endocytic itinerary of SARS-CoV2 can provide insights into viral trafficking and aid in designing new therapeutic targets. Here, we demonstrate that the receptor binding domain (RBD) of SARS-CoV2 is internalized via the clathrin and dynamin-independent, pH-dependent CLIC/GEEC (CG) endocytic pathway. Endosomal acidification inhibitors like BafilomycinA1 and NH4Cl, which inhibit the CG pathway, strongly block the uptake of RBD. Using transduction assays with SARS-CoV2 Spike-pseudovirus, we confirmed that these acidification inhibitors also impede viral infection. By contrast, Chloroquine neither affects RBD uptake nor extensively alters the endosomal pH, yet attenuates Spike-pseudovirus entry, indicating a pH-independent mechanism of intervention. We screened a subset of FDA-approved acidification inhibitors and found Niclosamide to be a potential SARS-CoV2 entry inhibitor. Niclosamide, thus, could provide broader applicability in subverting infection of similar category viruses entering host cells via this pH-dependent endocytic pathway.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-233718

ABSTRACT

The PAN-INDIA 1000 SARS-CoV-2 RNA Genome Sequencing Consortium has achieved its initial goal of completing the sequencing of 1000 SARS-CoV-2 genomes from nasopharyngeal and oropharyngeal swabs collected from individuals testing positive for COVID-19 by Real Time PCR. The samples were collected across 10 states covering different zones within India. Given the importance of this information for public health response initiatives investigating transmission of COVID-19, the sequence data is being released in GISAID database. This information will improve our understanding on how the virus is spreading, ultimately helping to interrupt the transmission chains, prevent new cases of infection, and provide impetus to research on intervention measures. This will also provide us with information on evolution of the virus, genetic predisposition (if any) and adaptation to human hosts. One thousand and fifty two sequences were used for phylodynamic, temporal and geographic mutation patterns and haplotype network analyses. Initial results indicate that multiple lineages of SARS-CoV-2 are circulating in India, probably introduced by travel from Europe, USA and East Asia. A2a (20A/B/C) was found to be predominant, along with few parental haplotypes 19A/B. In particular, there is a predominance of the D614G mutation, which is found to be emerging in almost all regions of the country. Additionally, mutations in important regions of the viral genome with significant geographical clustering have also been observed. The temporal haplotype diversities landscape in each region appears to be similar pan India, with haplotype diversities peaking between March-May, while by June A2a (20A/B/C) emerged as the predominant one. Within haplotypes, different states appear to have different proportions. Temporal and geographic patterns in the sequences obtained reveal interesting clustering of mutations. Some mutations are present at particularly high frequencies in one state as compared to others. The negative estimate Tajimas D (D = -2.26817) is consistent with the rapid expansion of SARS-CoV-2 population in India. Detailed mutational analysis across India to understand the gradual emergence of mutants at different regions of the country and its possible implication will help in better disease management.

SELECTION OF CITATIONS
SEARCH DETAIL
...