Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Microscopy (Oxf) ; 70(5): 461-468, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-33963400

ABSTRACT

The stability of ß-precipitates in the Zr-1Nb alloy has been studied under Ne ion irradiation of energy 250 keV by insitu transmission electron microscope as a function of irradiation dose. The irradiation was carried out up to ∼136 dpa at 573 K. Microstructural investigations have shown that up to ∼38 dpa, precipitates showed an increase in size, and for irradiation doses >38 dpa, the size of the precipitates was noticed to reduce. Post-irradiation energy-dispersive spectrometry of the specimens revealed the Nb concentration throughout the matrix to be ∼0.8-1.5%. Three-dimensional atom probe tomography was also carried out for irradiated specimens to look for the presence of any nanoclusters. However, Nb clustering was not observed in the specimens. It is proposed that the dissolution of the precipitates may be facilitated by an increase in the solubility limit of Nb in Zr caused by irradiation. The solubility limit may increase by the introduction of defects generated by irradiation and by the destabilization of the ß-phase. This may result in back-diffusion of Nb atoms to the matrix by radiation-enhanced diffusion to lower the strain produced by the defects, resulting in the dissolution of the precipitates.

2.
Microsc Microanal ; 25(6): 1449-1456, 2019 12.
Article in English | MEDLINE | ID: mdl-31210118

ABSTRACT

We report the growth of molybdenum trioxide (MoO3) nanoribbons (NRs) on epitaxial Ag and oriented Au nanostructures (NSs) using an ultra-high vacuum (UHV)-molecular beam epitaxy (MBE) technique at different substrate temperatures. An approximately 2 nm silver (Ag) film has been deposited at different growth temperatures (using UHV-MBE) on cleaned Si(100), Si(110), and Si(111) substrates. For faceted Au NSs, an approximately 50 nm Au film has been deposited (using high-vacuum thermal evaporation) on a Si(100) substrate with a native oxide layer at the interface and the sample was annealed in low vacuum (≈10-2) and at high temperature (≈975°C). Scanning electron microscopy measurements were performed to determine the morphology of MoO3/Ag and MoO3/Au composite films. From energy dispersive X-ray spectroscopy elemental mapping and line scans it is found that faceted Au NSs are more favorable for the growth of MoO3 NRs than epitaxial Ag microstructures.

3.
Nanotechnology ; 30(3): 035204, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30422818

ABSTRACT

We report on the synthesis and UV-vis photodetection application of p-type MoO2 nanostructures (NSs) on Si substrate. ß-MoO2 NSs have been synthesized from previously grown α-MoO3 structures/n-type Si via a hydrogenation process at 450 °C. After hydrogenation, the α-MoO3 structures were completely converted into ß-MoO2 NSs without the presence of sub-oxidized phases of molybdenum oxide. The as-grown NSs exhibited very good p-type electrical conductivity of ≈2.02 × 103 S-cm-1 with hole mobility of ≈7.8 ± 1.3 cm2-V-1-Sec-1. To explore optoelectronic properties of p-type ß-MoO2 NSs, we have fabricated a p-MoO2/n-Si heterojunction photodetector device with Au as the top and Al as the bottom contacts. The device exhibits peak photoresponsivity of ≈0.155 A W-1 with maximum detectivity ≈1.28 × 1011 cm-Hz1/2-W-1 and 44% external quantum efficiency around ≈436 nm, following the highest photoresponse (I ph/I d ≈ 6.4 × 102) and good response speed (rise time ∼29 ms and decay time ∼38 ms) at -1.5 V. Importantly, this device also shows good self-powered high-speed (rise time ∼47 ms and decay time ∼70 ms) photodetection performance with peak responsivity and detectivity of ≈45 mA W-1 and ≈4.05 × 1010 cm-Hz1/2-W-1, respectively. This broadband UV-visible light detection feature can be attributed to the coordinated effects of MoO2 band-edge absorption, interfacial defects and self absorption in Si. The photodetection behavior of the device has been understood by proposed energy-band diagrams with the help of an experimentally derived work function, band gap and valence band maximum position of MoO2 NSs.

4.
Sci Rep ; 7(1): 8378, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827746

ABSTRACT

The development of efficient materials for the generation and storage of renewable energy is now an urgent task for future energy demand. In this report, molybdenum disulphide hollow sphere (MoS2-HS) and its reduced graphene oxide hybrid (rGO/MoS2-S) have been synthesized and explored for energy generation and storage applications. The surface morphology, crystallinity and elemental composition of the as-synthesized materials have been thoroughly analysed. Inspired by the fascinating morphology of the MoS2-HS and rGO/MoS2-S materials, the electrochemical performance towards hydrogen evolution and supercapacitor has been demonstrated. The rGO/MoS2-S shows enhanced gravimetric capacitance values (318 ± 14 Fg-1) with higher specific energy/power outputs (44.1 ± 2.1 Whkg-1 and 159.16 ± 7.0 Wkg-1) and better cyclic performances (82 ± 0.95% even after 5000 cycles). Further, a prototype of the supercapacitor in a coin cell configuration has been fabricated and demonstrated towards powering a LED. The unique balance of exposed edge site and electrical conductivity of rGO/MoS2-S shows remarkably superior HER performances with lower onset over potential (0.16 ± 0.05 V), lower Tafel slope (75 ± 4 mVdec-1), higher exchange current density (0.072 ± 0.023 mAcm-2) and higher TOF (1.47 ± 0.085 s-1) values. The dual performance of the rGO/MoS2-S substantiates the promising application for hydrogen generation and supercapacitor application of interest.

5.
Nanotechnology ; 28(41): 415602, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28749376

ABSTRACT

We report a simple single step growth of α-MoO3 structures and energetically suitable site specific Ag nanoparticle (NP) decorated α-MoO3 structures on varied substrates, having almost similar morphologies and oxygen vacancies. We elucidate possible growth mechanisms in light of experimental findings and density functional theory (DFT) calculations. We experimentally establish and verified by DFT calculations that the MoO3(010) surface is a weakly interacting and stable surface compared to other orientations. From DFT study, the binding energy is found to be higher for (100) and (001) surfaces (∼-0.98 eV), compared to the (010) surface (∼-0.15 eV) and thus it is likely that Ag NP formation is not favorable on the MoO3(010) surface. The Ag decorated MoO3 (Ag-MoO3) nanostructured sample shows enhanced field emission properties with an approimately 2.1 times lower turn-on voltage of 1.67 V µm-1 and one order higher field enhancement factor (ß) of 8.6 × 104 compared to the MoO3 sample without Ag incorporation. From Kelvin probe force microscopy measurements, the average local work function (Φ) is found to be approximately 0.47 eV smaller for the Ag-MoO3 sample (∼5.70 ± 0.05 eV) compared to the MoO3 sample (∼6.17 ± 0.05 eV) and the reduction in Φ can be attributed to the shifting Fermi level of MoO3 toward vacuum via electron injection from Ag NPs to MoO3. The presence of oxygen vacancies together with Ag NPs lead to the highest ß and lowest turn-on field among the reported values under the MoO3 emitter category.

7.
ACS Appl Mater Interfaces ; 7(18): 9486-96, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25895657

ABSTRACT

A simple single-step chemical vapor deposition (CVD) method has been used to grow the faceted Au-ZnO hetero-nanostructures (HNs) either with nanowires (NWs) or with triangular nanoflakes (TNFs) on crystalline silicon wafers with varying oxygen defect density in ZnO nanostructures. This work reports on the use of these nanostructures on substrates for photodegradation of rhodamine B (RhB) dyes and phenol under the visible light illumination. The photoluminescence measurements showed a substantial enhancement in the ratio of defect emission to band-edge emission for TNF (ratio ≈ 7) compared to NW structures (ratio ≤ 0.4), attributed to the presence of more oxygen defects in TNF sample. The TNF structures showed 1 order of magnitude enhancement in photocurrent density and an order of magnitude less charge-transfer resistance (R(ct)) compared to NWs resulting high-performance photocatalytic activity. The TNFs show enhanced photocatalytic performance compared to NWs. The observed rate constant for RhB degradation with TNF samples is 0.0305 min(-1), which is ≈5.3 times higher compared to NWs case with 0.0058 min(-1). A comparison has been made with bulk ZnO powders and ZnO nanostructures without Au to deduce the effect of plasmonic nanoparticles (Au) and the shape of ZnO in photocatalytic performance. The results reveal the enhanced photocatalytic capability for the triangular nanoflakes of ZnO toward RhB degradation with good reusability that can be attracted for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...