Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37893706

ABSTRACT

Vegetative cells of Listeria monocytogenes and Escherichia coli and spores of Bacillus subtilis and Aspergillus niger were inoculated in soy milk at an initial concentration of ≈5 log CFU/mL. Inoculated and control (non-inoculated) soy milk samples were submitted to three types of treatments using a tubular annular thin film short-wave ultraviolet (UV-C) reactor with 1 mm of layer thickness. Treatments applied depended on the flow rate and the number of entries to the reactor, with UV-C doses ranging from 20 to 160 J/mL. The number of entries into the reactor tube (NET) was established as the most determining parameter for the efficiency of the UV-C treatments. Conidiospores of A. niger were reported as the most resistant, followed by B. subtilis spores, while vegetative cells were the most sensible to UV-C, with Listeria monocytogenes being more sensible than Escherichia coli. Treatments of just 80 J/mL were needed to achieve a 5 log CFU/mL reduction of L. monocytogenes while 160 J/mL was necessary to achieve a similar reduction for A. niger spores.

2.
Foods ; 8(11)2019 Nov 02.
Article in English | MEDLINE | ID: mdl-31684085

ABSTRACT

The aim of this study was to evaluate the effectiveness of different UVC treatments, alone or in combination with ultra-high pressure homogenization (UHPH) on Bacillus subtilis spores in milk. Spores of B. subtilis (CECT4002) were inoculated in whole and skim milk to an initial concentration about 6 log CFU/mL. Milk was subjected to different ultraviolet radiation treatments at 254 nm (UVC) using a concentric tubular reactor in a dose ranging from 10 to 160 J/mL. Different number of passes were used to adjust the final dose received by the matrix. In general, increasing the number of passes (defined as number of entries to the tunnel-NET) increased the inactivation of spores of B. subtilis. The best lethality results (above 4 Log CFU/mL) were obtained by applying doses from 100 J/mL with several NET. When the same doses were achieved with a single pass lethality in most cases did not exceed 1 log CFU/mL. Increasing the NET also increased the likelihood for the spores to remain longer in the effective distance from the UVC source, estimated as 0.02 mm for whole milk and 0.06 mm for skim milk. Combination of UHPH and UVC did not clearly increase the efficiency of a single UVC treatment, and a lower lethality was even observed in some cases. UHPH treatments increased the turbidity and absorption coefficient (254 nm) of both whole and skim milk.

SELECTION OF CITATIONS
SEARCH DETAIL
...