Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomimetics (Basel) ; 9(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921242

ABSTRACT

The brain is the most complex organ in the human body and, as such, its study entails great challenges (methodological, theoretical, etc.). Nonetheless, there is a remarkable amount of studies about the consequences of pathological conditions on its development and functioning. This bibliographic review aims to cover mostly findings related to changes in the physical distribution of neurons and their connections-the connectome-both structural and functional, as well as their modelling approaches. It does not intend to offer an extensive description of all conditions affecting the brain; rather, it presents the most common ones. Thus, here, we highlight the need for accurate brain modelling that can subsequently be used to understand brain function and be applied to diagnose, track, and simulate treatments for the most prevalent pathologies affecting the brain.

2.
Materials (Basel) ; 17(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38473570

ABSTRACT

The formulation of the entropic statistical theory and the related neo-Hookean model has been a major advance in the modeling of rubber-like materials, but the failure to explain some experimental observations such as the slope in Mooney plots resulted in hundreds of micromechanical and phenomenological models. The origin of the difficulties, the reason for the apparent need for the second invariant, and the reason for the relative success of models based on the Valanis-Landel decomposition have been recently explained. From that insight, a new micro-macro chain stretch connection using the stretch tensor (instead of the right Cauchy-Green deformation tensor) has been proposed and supported both theoretically and from experimental data. A simple three-parameter model using this connection has been suggested. The purpose of this work is to provide further insight into the model, to provide an analytical expression for the Gaussian contribution, and to provide a simple procedure to obtain the parameters from a tensile test using the Mooney space or the Mooney-Rivlin constants. From different papers, a wide variety of experimental tests on different materials and loading conditions have been selected to demonstrate that the simple model calibrated only from a tensile test provides accurate predictions for a wide variety of elastomers under different deformation levels and multiaxial patterns.

3.
Biomimetics (Basel) ; 9(2)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38392147

ABSTRACT

The human brain is arguably the most complex "machine" to ever exist. Its detailed functioning is yet to be fully understood, let alone modelled. Neurological processes have logical signal-processing and biophysical aspects, and both affect the brain's structure, functioning and adaptation. Mathematical approaches based on both information and graph theory have been extensively used in an attempt to approximate its biological functioning, along with Artificial Intelligence frameworks inspired by its logical functioning. In this article, an approach to model some aspects of the brain learning and signal processing is presented, mimicking the metastability and backpropagation found in the real brain while also accounting for neuroplasticity. Several simulations are carried out with this model to demonstrate how dynamic neuroplasticity, neural inhibition and neuron migration can reshape the brain's logical connectivity to synchronise signal processing and obtain certain target latencies. This work showcases the importance of dynamic logical and biophysical remodelling in brain plasticity. Combining mathematical (agents, graph theory, topology and backpropagation) and biomedical ingredients (metastability, neuroplasticity and migration), these preliminary results prove complex brain phenomena can be reproduced-under pertinent simplifications-via affordable computations, which can be construed as a starting point for more ambitiously accurate simulations.

4.
Comput Methods Programs Biomed ; 246: 108046, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301393

ABSTRACT

BACKGROUND AND OBJECTIVES: Glioblastoma multiforme (GBM) is one of the most aggressive cancers of the central nervous system. It is characterized by a high mitotic activity and an infiltrative ability of the glioma cells, neovascularization and necrosis. GBM evolution entails the continuous interplay between heterogeneous cell populations, chemotaxis, and physical cues through different scales. In this work, an agent-based hybrid model is proposed to simulate the coupling of the multiscale biological events involved in the GBM invasion, specifically the individual and collective migration of GBM cells and the concurrent evolution of the oxygen field and phenotypic plasticity. An asset of the formulation is that it is conceptually and computationally simple but allows to reproduce the complexity and the progression of the GBM micro-environment at cell and tissue scales simultaneously. METHODS: The migration is reproduced as the result of the interaction between every single cell and its micro-environment. The behavior of each individual cell is formulated through genotypic variables whereas the cell micro-environment is modeled in terms of the oxygen concentration and the cell density surrounding each cell. The collective behavior is formulated at a cellular scale through a flocking model. The phenotypic plasticity of the cells is induced by the micro-environment conditions, considering five phenotypes. RESULTS: The model has been contrasted by benchmark problems and experimental tests showing the ability to reproduce different scenarios of glioma cell migration. In all cases, the individual and collective cell migration and the coupled evolution of both the oxygen field and phenotypic plasticity have been properly simulated. This simple formulation allows to mimic the formation of relevant hallmarks of glioblastoma multiforme, such as the necrotic cores, and to reproduce experimental evidences related to the mitotic activity in pseudopalisades. CONCLUSIONS: In the collective migration, the survival of the clusters prevails at the expense of cell mitosis, regardless of the size of the groups, which delays the formation of necrotic foci and reduces the rate of oxygen consumption.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Oxygen , Cell Line, Tumor , Necrosis , Cell Movement/physiology , Biophysics , Tumor Microenvironment
5.
Materials (Basel) ; 16(9)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37176354

ABSTRACT

Research on auxetic metamaterials is important due to their high performance against impact loadings and their usefulness in actuators, among other applications. These metamaterials offer a negative Poisson's ratio at the macro level. However, usual auxetic metamaterials face challenges in (1) grading the effect, (2) coupling and combining auxetic metamaterials with non-auxetic materials due to boundary compatibility, (3) obtaining the same auxetic behavior in all directions in the transverse plane, and (4) adapting the regular geometry to the component design boundary and shape. The goal of this paper is to present a novel, recently patented tunable 3D metamaterial created to reproduce a wide spectrum of 3D auxetic and non-auxetic Poisson's ratios and Young's moduli. This wide range is obtained using the same basic unit cell geometry and boundary connections with neighboring cells, facilitating designs using functionally graded metamaterials as only the connectivity and position of the cell's internal nodes are modified. Based on simple spatial triangularization, the metamaterial is easily scalable and better accommodates spatial curvatures or boundaries by changing the locations of nodes and lengths of bars.

SELECTION OF CITATIONS
SEARCH DETAIL
...