Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 205: 116278, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31614221

ABSTRACT

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.


Subject(s)
Brain/physiology , Connectome/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Animals , Brain/diagnostic imaging , Connectome/standards , Female , Image Processing, Computer-Assisted/standards , Magnetic Resonance Imaging/standards , Male , Mice , Mice, Inbred C57BL , Nerve Net/diagnostic imaging , Reproducibility of Results
2.
Neurochem Res ; 41(4): 677-86, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26446037

ABSTRACT

Glial cells in the diseased nervous system undergo a process known as reactive gliosis. Gliosis of retinal Müller glial cells is characterized by an upregulation of glial fibrillary acidic protein and frequently by a reduction of inward K(+) current amplitudes. Purinergic signaling is assumed to be involved in gliotic processes. As previously shown, lack of the nucleotide receptor P2Y1 leads to an altered regulation of K(+) currents in Müller cells of the ischemic retina. Here, we asked first whether this effect is mediated by the IP3 receptor subtype 2 (IP3R2) known as the major downstream signaling target of P2Y1 in Müller cells. The second question was whether lack of IP3R2 affects neuronal survival in the control and ischemic retina. Ischemia was induced in wild type and IP3R2-deficient (IP 3 R2 (-/-)) mice by transient elevation of the intraocular pressure. Immunostaining and TUNEL labelling were used to quantify neuronal cell loss. The downregulation of inward K(+) currents in Müller cells from ischemic IP 3 R2 (-/-) retinae was less strong than in wild type animals. The reduction of the number of cells in the ganglion cell layer and of calretinin- and calbindin-positive cells 7 days after ischemia was similar in wild type and IP 3 R2 (-/-) mice. However, IP3R2 deficiency led to an increased number of TUNEL-positive cells in the outer nuclear layer at 1 day and to an enhanced postischemic loss of photoreceptors 7 days after ischemia. This implies that IP3R2 is involved in some but not all aspects of signaling in Müller cells after an ischemic insult.


Subject(s)
Inositol 1,4,5-Trisphosphate Receptors/genetics , Ischemia/pathology , Retina/pathology , Animals , Cell Count , Ependymoglial Cells/pathology , Gliosis/pathology , Mice, Knockout , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...