Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(3)2023 03 20.
Article in English | MEDLINE | ID: mdl-36981025

ABSTRACT

Dinucleotides are known as determinants for various structural and physiochemical properties of DNA and for binding affinities of proteins to DNA. These properties (e.g., stiffness) and bound proteins (e.g., transcription factors) are known to influence important biological functions, such as transcription regulation and 3D chromatin organization. Accordingly, the question arises of how the considerable variations in dinucleotide contents of eukaryotic chromosomes could still provide consistent DNA properties resulting in similar functions and 3D conformations. In this work, we investigate the hypothesis that coupled dinucleotide contents influence DNA properties in opposite directions to moderate each other's influences. Analyzing all 2478 chromosomes of 155 eukaryotic species, considering bias from coding sequences and enhancers, we found sets of correlated and anti-correlated dinucleotide contents. Using computational models, we estimated changes of DNA properties resulting from this coupling. We found that especially pure A/T dinucleotides (AA, TT, AT, TA), known to influence histone positioning and AC/GT contents, are relevant moderators and that, e.g., the Roll property, which is known to influence histone affinity of DNA, is preferably moderated. We conclude that dinucleotide contents might indirectly influence transcription and chromatin 3D conformation, via regulation of histone occupancy and/or other mechanisms.


Subject(s)
Eukaryota , Histones , Histones/genetics , Eukaryota/genetics , Eukaryota/metabolism , DNA/genetics , DNA/chemistry , Chromatin/genetics , Eukaryotic Cells/metabolism
2.
Genes (Basel) ; 12(10)2021 10 01.
Article in English | MEDLINE | ID: mdl-34680967

ABSTRACT

Several strongly conserved DNA sequence patterns in and between introns and intergenic regions (IIRs) consisting of short tandem repeats (STRs) with repeat lengths <3 bp have already been described in the kingdom of Animalia. In this work, we expanded the search and analysis of conserved DNA sequence patterns to a wider range of eukaryotic genomes. Our aims were to confirm the conservation of these patterns, to support the hypothesis on their functional constraints and/or the identification of unknown patterns. We pairwise compared genomic DNA sequences of genes, exons, CDS, introns and intergenic regions of 34 Embryophyta (land plants), 30 Protista and 29 Fungi using established k-mer-based (alignment-free) comparison methods. Additionally, the results were compared with values derived for Animalia in former studies. We confirmed strong correlations between the sequence structures of IIRs spanning over the entire domain of Eukaryotes. We found that the high correlations within introns, intergenic regions and between the two are a result of conserved abundancies of STRs with repeat units ≤2 bp (e.g., (AT)n). For some sequence patterns and their inverse complementary sequences, we found a violation of equal distribution on complementary DNA strands in a subset of genomes. Looking at mismatches within the identified STR patterns, we found specific preferences for certain nucleotides stable over all four phylogenetic kingdoms. We conclude that all of these conserved patterns between IIRs indicate a shared function of these sequence structures related to STRs.


Subject(s)
DNA, Intergenic/genetics , Evolution, Molecular , Genome/genetics , Introns/genetics , Eukaryota/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...