Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Dermatol ; 29(11): 1055-1061, 2020 11.
Article in English | MEDLINE | ID: mdl-32658355

ABSTRACT

Solid tumors exhibit an inversed pH gradient with increased intracellular pH (pHi ) and decreased extracellular pH (pHe ). This inside-out pH gradient is generated via sodium/hydrogen antiporter 1, vacuolar-type H + ATPases, monocarboxylate transporters, (bi)carbonate (co)transporters and carboanhydrases. Our knowledge on how pHe -signals are sensed and what the respective receptors induce inside cells is scarce. Some pH-sensitive receptors (GPR4, GPR65/TDAG8, GPR68/OGR1, GPR132/G2A, possibly GPR31 and GPR151) and ion channels (acid-sensing ion channels ASICs, transient receptor potential vanilloid receptors TRPVs) transduce signals inside cells. As little is known on the expression and function of these pH sensors, we used immunostainings to study tissue samples from common and rare skin cancers. Our current and future work is directed towards investigating the impact of all the pH-sensing receptors in different skin tumors using cell culture techniques with selective knockdown/knockout (siRNA/CRISPR-Cas9). To study cell migration and proliferation, novel impedance-based wound healing assays have been developed and are used. The field of pH sensing in tumors and wounds holds great promise for the development of pH-targeting therapies, either against pH regulators or sensors to inhibit cell proliferation and migration.


Subject(s)
Acid Sensing Ion Channels/metabolism , Receptors, G-Protein-Coupled/metabolism , Skin Neoplasms/chemistry , Skin Neoplasms/metabolism , TRPV Cation Channels/metabolism , Cell Movement , Cell Proliferation , Humans , Hydrogen-Ion Concentration , Signal Transduction
2.
Oncol Lett ; 20(1): 581-588, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32565983

ABSTRACT

In the current retrospective cohort study, the expression of the Proteasome 26S non-ATPase Subunit 9 (PSMD9) was investigated in 102 patients with cervical cancer. The rat homologue of PSMD9, Bridge-1, was identified as a binding protein of the transcription factors PDX-1 and E-12 via its PDZ-domain. The aim of the current study was to evaluate the prognostic or predictive value of PSMD9 expression as a biomarker for patients with cervical cancer. Tissue microarrays were constructed from formalin-fixed paraffin-embedded tissue specimens of cervical cancer and peritumoral stroma after hysterectomy and a Bridge-1 antibody was used to perform immunohistochemistry. The immunoreactions were analyzed using an immunoreactive score, which evaluated the number of positive cells as well as their intensity of PSMD9 expression. A misinterpretation of statistically significant results after multiple testing was controlled by the false discovery rate correction using the algorithm of Benjamini and Hochberg. All tumor tissues and almost all peritumoral stroma tissues expressed PSMD9. The PSMD9 expression in tumor tissues was significantly higher compared with the peritumoral stroma. PSMD9 expression correlated significantly with the expression of the proliferation marker MIB-1. Patients with stronger PSMD9 expression tended to exhibit a higher odds ratio for the recurrence of the disease in all patients (n=102) as well as in the subgroup of 47 patients having received a combined chemoradiotherapy following hysterectomy. In the group of 62 patients having that received radiotherapy following hysterectomy, which included the chemoradiotherapy patients, a higher PSMD9 expression significantly increased the odds for a recurrence to 1.983-fold even after FDR correction (P=0.0304). In conclusion, PSMD9 was indicated to be overexpressed in tumor tissues and associated with tumor cell proliferation. Therefore, PSMD9 may be useful as a tumor marker. Furthermore, increased PSMD9 overexpression may be used to predict resistance against radiation.

SELECTION OF CITATIONS
SEARCH DETAIL
...