Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 110(24): 7614-20, 2006 Jun 22.
Article in English | MEDLINE | ID: mdl-16774205

ABSTRACT

Reactive uptake coefficients for nitric acid onto size-selected (d(ve) = 102 and 233 nm) sodium chloride aerosols are determined for relative humidities (RH) between 85% and 10%. Both pure sodium chloride and sodium chloride mixed with magnesium chloride (X(Mg/Na) = 0.114, typical of sea salt) are studied. The aerosol is equilibrated with a carrier gas stream at the desired RH and then mixed with nitric acid vapor at a concentration of 60 ppb in a laminar flow tube reactor. At the end of the reactor, the particle composition is determined in real time with a laser ablation single particle mass spectrometer. For relative humidities above the efflorescence relative humidity (ERH), the particles exist as liquid droplets and the uptake coefficient ranges from 0.05 at 85% RH to >0.1 near the ERH. The droplet sizes, relative humidity and composition dependencies, are readily predicted by thermodynamics. For relative humidities below the ERH, the particles are nominally "solid" and uptake depends on the amount of surface adsorbed water (SAW). The addition of magnesium chloride to the particle phase (0.114 mole ratio of magnesium to sodium) facilitates uptake by increasing the amount of SAW. In the presence of magnesium chloride, the uptake coefficient remains high (>0.1) down to 10% RH, suggesting that the displacement of chloride by nitrate in fine sea salt particles is efficient over the entire range of conditions in the ambient marine environment. In the marine boundary layer, displacement of chloride by nitrate in fine sea salt particles should be nearly complete within a few hours (faster in polluted areas)-a time scale much shorter than the particle residence time in the atmosphere.

2.
Environ Sci Technol ; 40(6): 1843-8, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16570606

ABSTRACT

A flow-tube reactor was used to study the formation of particles from alpha-pinene ozonation. Particle phase products formed within the first 3-22 s of reaction were analyzed online using a scanning mobility particle sizer and two particle mass spectrometers. The first, a photoionization aerosol mass spectrometer (PIAMS), was used to determine the molecular composition of nascent particles between 30 and 50 nm in diameter. The second, a nano-aerosol mass spectrometer (NAMS), was used to determine the elemental composition of individual particles from 50 nm to below 10 nm in diameter. Molecular composition measurements with PIAMS confirm that both the stabilized Criegee intermediate and hydroperoxide channels of alpha-pinene ozonolysis are operative. However, these channels alone cannot explain the high oxygen content of the particles measured with NAMS. The carbon-to-oxygen mole ratios of suspected nucleating agents are in the range of 2.25-4.0, while the measured ratios are from 1.9 for 9 nm particles to 2.5 and 2.7 for 30 and 50 nm particles, respectively. The large oxygen content may arise by cocondensation of small oxygenated molecules such as water or multistep reactions with ozone, water, or other species that produce highly oxygenated macromolecules. In either case, the increasing ratio with increasing particle size suggests that the aerosol becomes less polar with time.


Subject(s)
Aerosols , Air Pollutants/analysis , Monoterpenes/chemistry , Oxidants, Photochemical/chemistry , Ozone/chemistry , Air Pollutants/chemistry , Bicyclic Monoterpenes , Carbon/analysis , Mass Spectrometry , Oxygen/analysis , Particle Size , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...