Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Algorithms Mol Biol ; 10: 22, 2015.
Article in English | MEDLINE | ID: mdl-26150892

ABSTRACT

Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator [Formula: see text] on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A and B used in dynamic programming, the scoring scheme [Formula: see text] correctly performs Pareto optimization over the same search space. We study different implementations of the Pareto operator with respect to their asymptotic and empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimization is faster than computing the same number of answers separately for each objective. For RNA structure prediction under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto front, and find that they extract information of a different nature from the folding space and can be meaningfully combined.

2.
Adv Bioinformatics ; 2012: 893048, 2012.
Article in English | MEDLINE | ID: mdl-22675348

ABSTRACT

The pairwise comparison of RNA secondary structures is a fundamental problem, with direct application in mining databases for annotating putative noncoding RNA candidates in newly sequenced genomes. An increasing number of software tools are available for comparing RNA secondary structures, based on different models (such as ordered trees or forests, arc annotated sequences, and multilevel trees) and computational principles (edit distance, alignment). We describe here the website BRASERO that offers tools for evaluating such software tools on real and synthetic datasets.

3.
J Comput Biol ; 18(10): 1339-51, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21548808

ABSTRACT

In 2004, Condon and coauthors gave a hierarchical classification of exact RNA structure prediction algorithms according to the generality of structure classes that they handle. We complete this classification by adding two recent prediction algorithms. More importantly, we precisely quantify the hierarchy by giving closed or asymptotic formulas for the theoretical number of structures of given size n in all the classes but one. This allows us to assess the tradeoff between the expressiveness and the computational complexity of RNA structure prediction algorithms.


Subject(s)
Algorithms , Computational Biology/methods , Models, Molecular , RNA/chemistry , Computer Simulation , Nucleic Acid Conformation , Probability , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...