Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Toxicol In Vitro ; 97: 105808, 2024 May.
Article in English | MEDLINE | ID: mdl-38484921

ABSTRACT

The use of millimeter waves (MMW) will exponentially grow in the coming years due to their future utilization in 5G/6G networks. The question of possible biological effects at these frequencies has been raised. In this present study, we aimed to investigate gene expression changes under exposure to MMW using the Bulk RNA Barcoding and sequencing (BRB-seq) technology. To address this issue, three exposure scenarios were performed aiming at: i) comparing the cellular response of two primary culture of keratinocytes (HEK and NHEK) and one keratinocyte derivate cell line (HaCaT) exposed to MMW; ii) exploring the incident power density dose-effect on gene expression in HaCaT cell line; and, iii) studying the exposure duration at the new ICNIRP exposure limit for the general population. With the exception of heat effect induced by high power MMW (over 10 mW/cm2), those exposure scenarios have not enabled us to demonstrate important gene expression changes in the different cell populations studied. Very few differentially genes were observed between MMW exposed samples and heat shock control, and most of them were significantly associated with heat shock response that may reflect small differences in the heat generation. Together these results show that acute exposure to MMW has no effects on the transcriptional landscape of human keratinocyte models under athermal conditions.


Subject(s)
Keratinocytes , Humans , Keratinocytes/metabolism , Cell Line
2.
J Neural Eng ; 20(1)2023 01 25.
Article in English | MEDLINE | ID: mdl-36621858

ABSTRACT

Objective.Numerical modeling of electric fields induced by transcranial alternating current stimulation (tACS) is currently a part of the standard procedure to predict and understand neural response. Quasi-static approximation (QSA) for electric field calculations is generally applied to reduce the computational cost. Here, we aimed to analyze and quantify the validity of the approximation over a broad frequency range.Approach.We performed electromagnetic modeling studies using an anatomical head model and considered approximations assuming either a purely ohmic medium (i.e. static formulation) or a lossy dielectric medium (QS formulation). The results were compared with the solution of Maxwell's equations in the cases of harmonic and pulsed signals. Finally, we analyzed the effect of electrode positioning on these errors.Main results.Our findings demonstrate that the QSA is valid and produces a relative error below 1% up to 1.43 MHz. The largest error is introduced in the static case, where the error is over 1% across the entire considered spectrum and as high as 20% in the brain at 10 Hz. We also highlight the special importance of considering the capacitive effect of tissues for pulsed waveforms, which prevents signal distortion induced by the purely ohmic approximation. At the neuron level, the results point a difference of sense electric field as high as 22% at focusing point, impacting pyramidal cells firing times.Significance.QSA remains valid in the frequency range currently used for tACS. However, neglecting permittivity (static formulation) introduces significant error for both harmonic and non-harmonic signals. It points out that reliable low frequency dielectric data are needed for accurate transcranial current stimulation numerical modeling.


Subject(s)
Transcranial Direct Current Stimulation , Transcranial Direct Current Stimulation/methods , Brain , Neurons , Pyramidal Cells , Head
3.
Sci Rep ; 11(1): 20679, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34667206

ABSTRACT

Mm-wave dielectric waveguides are a promising and low-cost technology for the transmission of ultra-high data rates. Besides the attenuation (losses) and group delay, the bending loss of the dielectric waveguides is also one of the key parameters to establish the capacity and energy efficiency of such wired links, when deployed in realistic scenarios. In this context, we report the experimental characterizations of bending effects for various solid and hollow commercially available dielectric waveguides at V-band (50-75 GHz). A wide-band transition has been designed to carry out the measurements using a Vector Network Analyzer (VNA) and extension modules. The measured results are in very good agreement with full-wave simulations. Our experimental results show an average bending loss of 1.46 dB over the entire V-band for the fundamental [Formula: see text] mode of a PTFE solid dielectric waveguide (core diameter of 3.06 mm) with a 90° bending angle and 25 mm radius of curvature. This value rises up to 2.88 dB (or 3.25 dB) when bending radius is changed to 15 mm (or bending angle grows up to 140°). The measurements also show that the measured bending losses increase significantly for hollow dielectric waveguides, in particular when the inner to outer diameter ratio gets larger.

4.
IEEE Trans Biomed Eng ; 68(3): 959-966, 2021 03.
Article in English | MEDLINE | ID: mdl-32749959

ABSTRACT

OBJECTIVE: The potentialities of improving the penetration of millimeter waves for breast cancer imaging are here explored. METHODS: A field focusing technique based on a convex optimization method is proposed, capable of increasing the field level inside a breast-emulating stratification. RESULTS: The theoretical results are numerically validated via the design and simulation of two circularly polarized antennas. The experimental validation of the designed antennas, using tissue-mimicking phantoms, is provided, being in good agreement with the theoretical predictions. CONCLUSION: The possibility of focusing, within a lossy medium, the electromagnetic power at millimeter-wave frequencies is demonstrated. SIGNIFICANCE: Field focusing can be a key for using millimeter waves for breast cancer detection.


Subject(s)
Breast Neoplasms , Breast/diagnostic imaging , Breast Neoplasms/diagnostic imaging , Diagnostic Imaging , Electromagnetic Phenomena , Female , Humans , Phantoms, Imaging
6.
Opt Express ; 28(10): 14648-14661, 2020 May 11.
Article in English | MEDLINE | ID: mdl-32403502

ABSTRACT

A novel all-metal graded index Gutman lens is proposed. It exploits an interleaved metasurface unit-cell with glide symmetry that can provide high values of equivalent refractive index with low frequency dispersion. The result is a compact lens with broadband performance and a wide field of view up to ±70°. The proposed lens exhibits low loss, directive beams and is an appealing candidate for space applications. The design approach introduced can be applied to other graded index lenses with circular symmetry using rectangular or circular periodic structures.

7.
Bioelectromagnetics ; 41(2): 121-135, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31943296

ABSTRACT

This study deals with the design and calibration of the first mode-stirred reverberation chamber (RC) in the 60-GHz-band adapted for in vivo bioelectromagnetic studies. In addition to the interface for electromagnetic and thermal dosimetry, the interfaces for lighting and ventilation were integrated into the RC walls while preserving acceptable shielding. The RC with mechanical and electronic steering capabilities is characterized in the 55-65 GHz range. To this end, murine skin-equivalent phantoms of realistic shape were designed and fabricated. Their complex permittivity is within ±12% of the target value of murine skin (6.19-j5.81 at 60 GHz). The quality factor of the RC loaded with an animal cage, bedding litter, and five murine phantoms was found to be 1.2 × 104 . The losses inside the RC were analyzed, and it was demonstrated that the main sources of the power dissipation were the phantoms and mice cage. The input power required to reach the average incident power density of 1 and 5 mW/cm2 was found to be 0.23 and 1.14 W, respectively. Surface heating of the mice models was measured in the infrared (IR) range using a specifically designed interface, transparent at IR and opaque at millimeter waves (mmW). Experimental results were compared with an analytical solution of the heat transfer equation and to full-wave computations. Analytical and numerical results were in very good agreement with measurements (the relative deviation after 90 min of exposure was within 4.2%). Finally, a parametric study was performed to assess the impact of the thermophysical parameters on the resulting heating. Bioelectromagnetics. 2020;41:121-135. © 2020 Bioelectromagnetics Society.


Subject(s)
Electromagnetic Fields , Phantoms, Imaging , Animals , Calibration , Computer-Aided Design , Equipment Design , Mice , Reproducibility of Results , Skin , Temperature , Water
8.
Sci Rep ; 9(1): 15249, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31649300

ABSTRACT

Millimeter wave (MMW)-induced heating represents a promising alternative for non-invasive hyperthermia of superficial skin cancer, such as melanoma. Pulsed MMW-induced heating of tumors allows for reaching high peak temperatures without overheating surrounding tissues. Herein, for the first time, we evaluate apoptotic and heat shock responses of melanoma cells exposed in vitro to continuous (CW) or pulsed-wave (PW) amplitude-modulated MMW at 58.4 GHz with the same average temperature rise. Using an ad hoc exposure system, we generated 90 min pulse train with 1.5 s pulse duration, period of 20 s, amplitude of 10 °C, and steady-state temperature at the level of cells of 49.2 °C. The activation of Caspase-3 and phosphorylation of HSP27 were investigated using fluorescence microscopy to monitor the spatial variation of cellular response. Our results demonstrate that, under the considered exposure conditions, Caspase-3 activation was almost 5 times greater following PW exposure compared to CW. The relationship between the PW-induced cellular response and SAR-dependent temperature rise was non-linear. Phosphorylation of HSP27 was 58% stronger for PW compared to CW. It exhibits a plateau for the peak temperature ranging from 47.7 to 49.2 °C. Our results provide an insight into understanding of the cellular response to MMW-induced pulsed heating.


Subject(s)
Apoptosis , Heat-Shock Response , Infrared Rays , Cell Line, Tumor , Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism , Phosphorylation
9.
Bioelectromagnetics ; 40(8): 553-568, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31579965

ABSTRACT

Shallow penetration of millimeter waves (MMW) and non-uniform illumination in in vitro experiments result in a non-uniform distribution of the specific absorption rate (SAR). These SAR gradients trigger convective currents in liquids affecting transient and steady-state temperature distributions. We analyzed the effect of convection on temperature dynamics during MMW exposure in continuous-wave (CW) and pulsed-wave (PW) amplitude-modulated regimes using micro-thermocouples. Temperature rise kinetics are characterized by the occurrence of a temperature peak that shifts to shorter times as the SAR of the MMW exposure increases and precedes initiation of convection in bulk. Furthermore, we demonstrate that the liquid volume impacts convection. Increasing the volume results in earlier triggering of convection and in a greater cooling rate after the end of the exposure. In PW regimes, convection strongly depends on the pulse duration that affects the heat pulse amplitude and cooling rate. The latter results in a change of the average temperature in PW regime. Bioelectromagnetics. 2019;40:553-568. © 2019 Bioelectromagnetics Society.


Subject(s)
Convection , Hot Temperature , In Vitro Techniques , Electromagnetic Radiation , Humans , Kinetics , Radio Waves , Temperature
10.
Sensors (Basel) ; 19(16)2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31395810

ABSTRACT

The paper presents the design and fabrication of a low-cost and easy-to-fabricate laser-induced graphene sensor together with its implementation for multi-sensing applications. Laser-irradiation of commercial polymer film was applied for photo-thermal generation of graphene. The graphene patterned in an interdigitated shape was transferred onto Kapton sticky tape to form the electrodes of a capacitive sensor. The functionality of the sensor was validated by employing them in electrochemical and strain-sensing scenarios. Impedance spectroscopy was applied to investigate the response of the sensor. For the electrochemical sensing, different concentrations of sodium sulfate were prepared, and the fabricated sensor was used to detect the concentration differences. For the strain sensing, the sensor was deployed for monitoring of human joint movements and tactile sensing. The promising sensing results validating the applicability of the fabricated sensor for multiple sensing purposes are presented.

11.
Sci Rep ; 9(1): 9343, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31249327

ABSTRACT

A joint metabolomic and lipidomic workflow is used to account for a potential effect of millimeter waves (MMW) around 60 GHz on biological tissues. For this purpose, HaCaT human keratinocytes were exposed at 60.4 GHz with an incident power density of 20 mW/cm², this value corresponding to the upper local exposure limit for general public in the context of a wide scale deployment of MMW technologies and devices. After a 24h-exposure, endo- and extracellular extracts were recovered to be submitted to an integrative UPLC-Q-Exactive metabolomic and lipidomic workflow. R-XCMS data processing and subsequent statistical treatment led to emphasize a limited number of altered features in lipidomic sequences and in intracellular metabolomic analyses, whatever the ionization mode (i.e 0 to 6 dysregulated features). Conversely, important dysregulations could be reported in extracellular metabolomic profiles with 111 and 99 frames being altered upon MMW exposure in positive and negative polarities, respectively. This unexpected extent of modifications can hardly stem from the mild changes that could be reported throughout transcriptomics studies, leading us to hypothesize that MMW might alter the permeability of cell membranes, as reported elsewhere.


Subject(s)
Cell Membrane Permeability/radiation effects , Keratinocytes/metabolism , Keratinocytes/radiation effects , Metabolome , Metabolomics , Radio Waves , Biomarkers , Computational Biology/methods , Humans , Lipidomics , Metabolomics/methods , Molecular Diagnostic Techniques , Radio Waves/adverse effects , Reproducibility of Results
12.
Phys Rev Lett ; 122(10): 108101, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30932680

ABSTRACT

Autonomous implantable bioelectronics requires efficient radiating structures for data transfer and wireless powering. The radiation of body-implanted capsules is investigated to obtain the explicit radiation optima for E- and B-coupled sources of arbitrary dimensions and properties. The analysis uses the conservation-of-energy formulation within dispersive homogeneous and stratified canonical body models. The results reveal that the fundamental bounds exceed by far the efficiencies currently obtained by conventional designs. Finally, a practical realization of the optimal source based on a dielectric-loaded cylindrical-patch structure is presented. The radiation efficiency of the structure closely approaches the theoretical bounds and shows a fivefold improvement over existing systems.

13.
IEEE Trans Biomed Circuits Syst ; 13(2): 403-412, 2019 04.
Article in English | MEDLINE | ID: mdl-30640625

ABSTRACT

BACKGROUND AND OBJECTIVE: In-body biotelemetry devices enable wireless monitoring of a wide range of physiological parameters. These devices rely on antennas to interface with external receivers, yet existing systems suffer from impedance detuning caused by the substantial differences in electromagnetic properties among various tissues. In this paper, we propose an immune-to-detuning in-body biotelemetry platform featuring a novel tissue-independent antenna design. METHODS: Our approach uses a novel slot-patch conformal antenna integrated into a flexible polyimide printed circuit board containing the device circuitry and encapsulated within a 17.7 mm [Formula: see text]8.9 mm biocompatible shell. The antenna is synthesized and optimized using a hybrid analytical-numerical approach and, then, characterized numerically and experimentally in terms of impedance stability. RESULTS: The proposed platform shows stable impedance, whereas operating in any mammalian tissue as well as in air. The system is optimized for the 434-MHz industrial, scientific, and medical band and can easily be returned for any MedRadio band in the 401-457-MHz spectrum. CONCLUSION: Ultrarobust impedance characteristics were achieved. Without any modifications, the proposed biotelemetry platform can be used, for instance, as an ingestible for humans or as an implantable for a wide range of animals: from rodents to cattle.


Subject(s)
Telemetry/methods , Wireless Technology , Electromagnetic Phenomena , Phantoms, Imaging
14.
Article in English | MEDLINE | ID: mdl-29610096

ABSTRACT

Ferroelectric oxide films are attractive to design and fabricate reconfigurable and miniaturized planar devices operating at microwaves due to the large electric field dependence of their dielectric permittivity. In particular, KTa1-xNbxO3 (KTN) ferroelectric material presents a high tunability under moderate dc bias electric field. However, its intrinsic dielectric loss strongly contributes to the global loss of the related devices and limits their application areas at microwaves. In this paper, a twofold approach is investigated to reduce the device loss. The intrinsic loss of KTN is first reduced by doping the ferroelectric material with a low-loss dielectric material, namely, MgO. Second, the doped ferroelectric films are confined using an original laser microetching process. Both routes have been implemented here to provide a synergic effect on the total insertion loss of the microwave test device, namely, a coplanar waveguide stub resonator. The experimental data demonstrate a decrease of the intrinsic loss by a factor of ~2 and a decrease of the global loss by a factor of ~4 with a frequency tunability close to 10% at ~10 GHz under a moderate biasing (80 kV/cm).

15.
J Proteome Res ; 17(3): 1146-1157, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29430917

ABSTRACT

The glucose analogue 2-deoxyglucose (2-DG) impedes cancer progression in animal models and is currently being assessed as an anticancer therapy, yet the mode of action of this drug of high clinical significance has not been fully delineated. In an attempt to better characterize its pharmacodynamics, an integrative UPLC-Q-Exactive-based joint metabolomic and lipidomic approach was undertaken to evaluate the metabolic perturbations induced by this drug in human HaCaT keratinocyte cells. R-XCMS data processing and subsequent multivariate pattern recognition, metabolites identification, and pathway analyses identified eight metabolites that were most significantly changed upon a 3 h 2-DG exposure. Most of these dysregulated features were emphasized in the course of lipidomic profiling and could be identified as ceramide and glucosylceramide derivatives, consistently with their involvement in cell death programming. Even though metabolomic analyses did not generally afford such clear-cut dysregulations, some alterations in phosphatidylcholine and phosphatidylethanolamine derivatives could be highlighted as well. Overall, these results support the adequacy of the proposed analytical workflow and might contribute to a better understanding of the mechanisms underlying the promising effects of 2-DG.


Subject(s)
Antineoplastic Agents/pharmacology , Ceramides/metabolism , Deoxyglucose/pharmacology , Glucosylceramides/metabolism , Keratinocytes/drug effects , Lipid Metabolism/drug effects , Cell Death/drug effects , Cell Line, Transformed , Ceramides/analysis , Chromatography, High Pressure Liquid , Galactolipids/analysis , Galactolipids/metabolism , Glucosylceramides/analysis , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Mass Spectrometry , Metabolomics/methods , Phosphatidylcholines/analysis , Phosphatidylcholines/metabolism , Phosphatidylethanolamines/analysis , Phosphatidylethanolamines/metabolism
16.
J Radiat Res ; 58(4): 439-445, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28339776

ABSTRACT

Several forthcoming wireless telecommunication systems will use electromagnetic frequencies at millimeter waves (MMWs), and technologies developed around the 60-GHz band will soon know a widespread distribution. Free nerve endings within the skin have been suggested to be the targets of MMW therapy which has been used in the former Soviet Union. So far, no studies have assessed the impact of MMW exposure on neuronal metabolism. Here, we investigated the effects of a 24-h MMW exposure at 60.4 GHz, with an incident power density (IPD) of 5 mW/cm², on the dopaminergic turnover of NGF-treated PC12 cells. After MMW exposure, both intracellular and extracellular contents of dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) were studied using high performance liquid chromatography. Impact of exposure on the dopamine transporter (DAT) expression was also assessed by immunocytochemistry. We analyzed the dopamine turnover by assessing the ratio of DOPAC to DA, and measuring DOPAC accumulation in the medium. Neither dopamine turnover nor DAT protein expression level were impacted by MMW exposure. However, extracellular accumulation of DOPAC was found to be slightly increased, but not significantly. This result was related to the thermal effect, and overall, no evidence of non-thermal effects of MMW exposure were observed on dopamine metabolism.


Subject(s)
Dopamine/metabolism , Electromagnetic Radiation , Nerve Growth Factor/pharmacology , 3,4-Dihydroxyphenylacetic Acid/metabolism , Animals , Dopamine Plasma Membrane Transport Proteins/metabolism , Extracellular Space/metabolism , PC12 Cells , Rats
17.
Bioelectromagnetics ; 38(1): 11-21, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27571392

ABSTRACT

Due to shallow penetration of millimeter waves (MMW) and convection in liquid medium surrounding cells, the problem of accurate assessment of local MMW heating in in vitro experiments remains unsolved. Conventional dosimetric MMW techniques, such as infrared imaging or fiber optic (FO) sensors, face several inherent limits. Here we propose a methodology for accurate local temperature measurement and subsequent specific absorption rate (SAR) retrieval using microscale thermocouples (TC). SAR was retrieved by fitting the measured initial temperature rise to the numerical solution of an equivalent thermal model. It was found that the accuracy of temperature measurement depends on thermosensor size, that is, the smaller TC, the more accurate the temperature measurement. SAR determined using TC with lead diameters of 25 and 75 µm demonstrated 98.5% and 80.4% match with computed SAR, respectively. However, both TC provided the same temperature rises in long run (> 10 min). FO probe failed to measure adequately local heating both for short and long exposures due to the relatively large size of the probe sensor (400 µm) and time constant (0.6 s). Calculated SAR in the cell monolayer was almost two times lower than that in the surrounding liquid. It was shown that the impact of the cell monolayer on heating due to its small thickness (5 to 10 µm) can be considered as negligible. Moreover, we demonstrated the possibility of accurate measurement of MMW-induced thermal pulses (up to 10 °C) using 25 µm TC. Bioelectromagnetics. 38:11-21, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Absorption, Radiation , Cells/radiation effects , Models, Biological , Radio Waves , Temperature , Humans
18.
Bioelectromagnetics ; 37(7): 444-54, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27483046

ABSTRACT

Millimeter waves (MMW) will be increasingly used for future wireless telecommunications. Previous studies on skin keratinocytes showed that MMW could impact the mRNA expression of Transient Receptor Potential cation channel subfamily Vanilloid, member 2 (TRPV2). Here, we investigated the effect of MMW exposure on this marker, as well as on other membrane receptors such as Transient Receptor Potential cation channel subfamily Vanilloid, member 1 (TRPV1) and purinergic receptor P2X, ligand-gated ion channel, 3 (P2 × 3). We exposed the Neuroscreen-1 cell line (a PC12 subclone), in order to evaluate if acute MMW exposures could impact expression of these membrane receptors at the protein level. Proteotoxic stress-related chaperone protein Heat Shock Protein 70 (HSP70) expression level was also assessed. We used an original high-content screening approach, based on fluorescence microscopy, to allow cell-by-cell analysis and to detect any cell sub-population responding to exposure. Immunocytochemistry was done after 24 h MMW exposure of cells at 60.4 GHz, with an incident power density of 10 mW/cm(2) . Our results showed no impact of MMW exposure on protein expressions of HSP70, TRPV1, TRPV2, and P2 × 3. Moreover, no specific cell sub-populations were found to express one of the studied markers at a different level, compared to the rest of the cell populations. However, a slight insignificant increase in HSP70 expression and an increase in protein expression variability within cell population were observed in exposed cells, but controls showed that this was related to thermal effect. Bioelectromagnetics. 37:444-454, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Cell Differentiation/radiation effects , Gene Expression Regulation/radiation effects , HSP70 Heat-Shock Proteins/metabolism , Membrane Transport Proteins/genetics , Neurons/cytology , Radio Waves/adverse effects , Animals , Biomarkers/metabolism , Neurons/radiation effects , PC12 Cells , Rats
19.
PLoS One ; 11(8): e0160810, 2016.
Article in English | MEDLINE | ID: mdl-27529420

ABSTRACT

Millimeter Waves (MMW) will be used in the next-generation of high-speed wireless technologies, especially in future Ultra-Broadband small cells in 5G cellular networks. Therefore, their biocompatibilities must be evaluated prior to their massive deployment. Using a microarray-based approach, we analyzed modifications to the whole genome of a human keratinocyte model that was exposed at 60.4 GHz-MMW at an incident power density (IPD) of 20 mW/cm2 for 3 hours in athermic conditions. No keratinocyte transcriptome modifications were observed. We tested the effects of MMWs on cell metabolism by co-treating MMW-exposed cells with a glycolysis inhibitor, 2-deoxyglucose (2dG, 20 mM for 3 hours), and whole genome expression was evaluated along with the ATP content. We found that the 2dG treatment decreased the cellular ATP content and induced a high modification in the transcriptome (632 coding genes). The affected genes were associated with transcriptional repression, cellular communication and endoplasmic reticulum homeostasis. The MMW/2dG co-treatment did not alter the keratinocyte ATP content, but it did slightly alter the transcriptome, which reflected the capacity of MMW to interfere with the bioenergetic stress response. The RT-PCR-based validation confirmed 6 MMW-sensitive genes (SOCS3, SPRY2, TRIB1, FAM46A, CSRNP1 and PPP1R15A) during the 2dG treatment. These 6 genes encoded transcription factors or inhibitors of cytokine pathways, which raised questions regarding the potential impact of long-term or chronic MMW exposure on metabolically stressed cells.


Subject(s)
Deoxyglucose/pharmacology , Keratinocytes/drug effects , Keratinocytes/radiation effects , Radio Waves , Transcriptome/drug effects , Transcriptome/radiation effects , Adenosine Triphosphate/metabolism , Cell Line , Humans , Intracellular Space/drug effects , Intracellular Space/metabolism , Intracellular Space/radiation effects , Keratinocytes/cytology , Keratinocytes/metabolism
20.
Neurosci Lett ; 618: 58-65, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26921450

ABSTRACT

Technologies for wireless telecommunication systems using millimeter waves (MMW) will be widely deployed in the near future. Forthcoming applications in this band, especially around 60GHz, are mainly developed for high data-rate local and body-centric telecommunications. At those frequencies, electromagnetic radiations have a very shallow penetration into biological tissues, making skin keratinocytes, and free nerve endings of the upper dermis the main targets of MMW. Only a few studies assessed the impact of MMW on neuronal cells, and none of them investigated a possible effect on neuronal differentiation. We used a neuron-like cell line (PC12), which undergoes neuronal differentiation when treated with the neuronal growth factor (NGF). PC12 cells were exposed at 60.4GHz for 24h, at an incident power density averaged over the cell monolayer of 10mW/cm(2). Using a large scale cell-by-cell analysis based on high-content screening microscopy approach, we assessed potential effects of MMW on PC12 neurite outgrowth and cytoskeleton protein expression. No differences were found in protein expression of the neuronal marker ß3-tubulin nor in internal expression control ß-tubulin. On the other hand, our data showed a slight increase, although insignificant, in neurite outgrowth, induced by MMW exposure. However, experimental controls demonstrated that this increase was related to heating.


Subject(s)
Neurites/radiation effects , Radio Waves , Animals , Biomarkers/metabolism , Nerve Growth Factor/pharmacology , Neurites/drug effects , Neurites/physiology , PC12 Cells , Rats , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...