Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Environ Radioact ; 278: 107491, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003964

ABSTRACT

An advanced spatial-unfolding technique capable of reconstructing the activity distribution within an exclusion zone from Compton gamma imager measurements taken outside of it is introduced. Although the method is generally applicable to extended sources, we demonstrate it here on a calibrated Cs-137 point source through Monte Carlo simulation studies as well as with measurements made using a Silicon Compton Telescope for Safety and Security (SCoTSS) gamma imager. For synthetic data the method accurately reconstructs the total activity contained within the mapped zone of interest, even when the size of the basis elements used to reconstruct the activity distribution is larger than the source itself. For experimental data, the method reliably located the source but underestimated its activity by up to 17%. This is accurate enough for real-world security applications. The underestimation is likely due to effects not yet included in the simulated response of the detector. The method has widespread applicability in the radiological/nuclear safety and security field, particularly for scenarios in which a threat material or contaminated area lies within a no-entry or no-fly zone.

2.
J Environ Radioact ; 240: 106758, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34700122

ABSTRACT

It is a standard procedure in many countries that response to a nuclear or radiological accident or incident would involve mobile aerial- or ground-based survey with highly sensitive gamma-ray detectors to map the distribution of radioactivity. There may however arise situations in which ground- or air-based detectors are not able to access an area to survey for radioactive materials, therefore technologies and techniques that can estimate the position and activity of radioactive materials from a distance are under development. Tomographic reconstruction methods, well-known in medical physics, permit the reconstruction of an N-dimensional map or image, from a number of N-1-dimensional cross-sectional images, or back-projections. We are investigating a tomographic reconstruction method to reconstruct the radioactivity distribution within a restricted-access zone using measurements from a Compton gamma imager placed at several locations around the perimeter of the zone. In this work an extended source of La-140 with an activity of 35 GBq was deposited within a 500 m by 500 m zone that was surveyed from the perimeter at six locations using a Silicon photomultiplier-based Compton Telescope for Safety and Security (SCoTSS) gamma imager. The reconstructed Compton images from multiple viewpoints were then projected back into the zone to reconstruct the distribution of La-140 within it. This tomographic method reconstructed high intensity along the known location of the La-140 source, suggesting that the method is able to localize the radioactive material. A simple fit to measured counts using a point-source approximation of the source distribution yielded a strength estimate of (7 ± 2) GBq at time of deposition, a reasonable result given the presence of soil and snow attenuation. Our method provides an expedient estimate of the distribution of radioactivity using tomographic techniques. It may be used to inform decisions made on the scene in urgent situations where the distribution of radioactivity must be reconstructed from a distance.


Subject(s)
Algorithms , Radiation Monitoring , Monte Carlo Method
3.
J Environ Radioact ; 102(11): 1018-23, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21745702

ABSTRACT

In response to the Fukushima nuclear reactor accident, on March 20th, 2011, Natural Resources Canada conducted aerial radiation surveys over water just off the west coast of Vancouver Island. Dose-rate levels were found to be consistent with background radiation, however a clear signal due to (133)Xe was observed. Methods to extract (133)Xe count rates from the measured spectra, and to determine the corresponding (133)Xe activity concentration, were developed. The measurements indicate that (133)Xe concentrations on average lie in the range of 30-70 Bq/m(3).


Subject(s)
Air Pollutants, Radioactive/analysis , Radiation Monitoring/methods , Radioactive Hazard Release , Xenon Radioisotopes/analysis , Canada , Geography , Japan , Radiation Dosage , Risk Assessment/methods
4.
Med Phys ; 32(10): 3084-94, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16279060

ABSTRACT

The BEAMnrc/EGSnrc Monte Carlo code system is employed to develop a model of the National Research Council of Canada primary standard of absorbed dose to tissue in a beta radiation field, comprising an extrapolation chamber and 90Sr/90Y beta source. We benchmark the model against the measured response of the chamber in terms of absorbed dose to air, for three different experimental setups when irradiated by the 90Sr/90Y source. For the first setup, the chamber cavity depth is fixed at 0.2 cm and the source-to-chamber distance varied between 11 and 60 cm. In the other two cases, the source-to-chamber distance is fixed at 30 cm. In one case the response for different chamber depths is studied, while in the other case the chamber depth is fixed at 0.2 cm as different thicknesses of Mylar are added to the front surface of the extrapolation chamber. The agreement as a function of distance between the calculated and measured responses is within 0.37% for a variation in response of a factor of 29. In the case of dose versus chamber depth, the agreement is within 0.4% for the ISO-recommended nominal depths of 0.025-0.25 cm. Agreement between calculated and measured responses is very good (between 0.02% and 0.2%) for added Mylar foils of thicknesses up to 10.8 mg cm(-2). For larger Mylar thicknesses, deviations of 0.6%-1.2% are observed, which are possibly due to the systematic uncertainties associated with the restricted collisional stopping powers of air or Mylar used in the calculations. We conclude that our simulation model represents the extrapolation chamber and 90Sr/90Y source with adequate accuracy to calculate correction factors for accurate realization of dose rate to tissue at a depth of 7 mg cm(-2) in an ICRU tissue phantom, despite the fact that the uncertainties in the physical characteristics of the source leave some uncertainty in certain calculated quantities.


Subject(s)
Guidelines as Topic , Models, Biological , Radiometry/methods , Radiometry/standards , Reference Standards , Strontium Radioisotopes/analysis , Yttrium Radioisotopes/analysis , Computer Simulation , Models, Statistical , Monte Carlo Method , Radiation Dosage , Strontium Radioisotopes/standards , Yttrium Radioisotopes/standards
5.
Med Phys ; 32(10): 3084-3094, 2005 Oct.
Article in English | MEDLINE | ID: mdl-28523831

ABSTRACT

The BEAMnrc/EGSnrc Monte Carlo code system is employed to develop a model of the National Research Council of Canada primary standard of absorbed dose to tissue in a beta radiation field, comprising an extrapolation chamber and Sr90∕Y90 beta source. We benchmark the model against the measured response of the chamber in terms of absorbed dose to air, for three different experimental setups when irradiated by the Sr90∕Y90 source. For the first setup, the chamber cavity depth is fixed at 0.2cm and the source-to-chamber distance varied between 11 and 60cm. In the other two cases, the source-to-chamber distance is fixed at 30cm. In one case the response for different chamber depths is studied, while in the other case the chamber depth is fixed at 0.2cm as different thicknesses of Mylar™ are added to the front surface of the extrapolation chamber. The agreement as a function of distance between the calculated and measured responses is within 0.37% for a variation in response of a factor of 29. In the case of dose versus chamber depth, the agreement is within 0.4% for the ISO-recommended nominal depths of 0.025-0.25cm. Agreement between calculated and measured responses is very good (between 0.02% and 0.2%) for added Mylar foils of thicknesses up to 10.8mgcm-2. For larger Mylar thicknesses, deviations of 0.6%-1.2% are observed, which are possibly due to the systematic uncertainties associated with the restricted collisional stopping powers of air or Mylar used in the calculations. We conclude that our simulation model represents the extrapolation chamber and Sr90∕Y90 source with adequate accuracy to calculate correction factors for accurate realization of dose rate to tissue at a depth of 7mgcm-2 in an ICRU tissue phantom, despite the fact that the uncertainties in the physical characteristics of the source leave some uncertainty in certain calculated quantities.

SELECTION OF CITATIONS
SEARCH DETAIL
...