Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther ; 32(2): 457-468, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38053333

ABSTRACT

CTLA-4 is a crucial immune checkpoint receptor involved in the maintenance of immune homeostasis, tolerance, and tumor control. Antibodies targeting CTLA-4 have been promising treatments for numerous cancers, but the mechanistic basis of their anti-tumoral immune-boosting effects is poorly understood. Although the ctla4 gene also encodes an alternatively spliced soluble variant (sCTLA-4), preclinical/clinical evaluation of anti-CTLA-4-based immunotherapies have not considered the contribution of this isoform. Here, we explore the functional properties of sCTLA-4 and evaluate the efficacy of isoform-specific anti-sCTLA-4 antibody targeting in a murine cancer model. We show that expression of sCTLA-4 by tumor cells suppresses CD8+ T cells in vitro and accelerates growth and experimental metastasis of murine tumors in vivo. These effects were accompanied by modification of the immune infiltrate, notably restraining CD8+ T cells in a non-cytotoxic state. sCTLA-4 blockade with isoform-specific antibody reversed this restraint, enhancing intratumoral CD8+ T cell activation and cytolytic potential, correlating with therapeutic efficacy and tumor control. This previously unappreciated role of sCTLA-4 suggests that the biology and function of multi-gene products of immune checkpoint receptors need to be fully elucidated for improved mechanistic understanding of cancer immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Animals , Mice , Antibodies , CD8-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/genetics , Neoplasms/genetics , Neoplasms/therapy , Protein Isoforms/genetics
2.
Cancer Res Commun ; 4(1): 118-133, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38147007

ABSTRACT

Squamous cell carcinomas, which arise from the cells that line the mucosal surfaces of the head and neck, represent the most common type of head and neck cancers (HNSCC). Human papillomavirus (HPV) infection has been strongly associated with the development of oropharyngeal cancers, which are cancers that occur in the back of the throat, including the tonsils and base of the tongue. HNSCCs with and without HPV infection have distinct pathology, with HPV-positive patients having higher levels of immune infiltration, activation in the tumor microenvironment and better response to radiation and chemotherapy. It is, however, unclear whether HPV infection in HNSCCs has the potential to activate innate-immune sensing pathways and if these cancers possess intrinsic immunogenicity associated with HPV infection. Here we investigate the innate immune stimulator of interferon genes (STING) pathway and immune responses to STING activation in HNSCCs and uncover fundamental differences in the regulation of this pathway in cell lines versus primary human clinical specimens. We show that while STING is differentially expressed in HPV-positive and -negative HNSCC cell lines, they exhibit a gross functional defect in signaling through this pathway. However, STING activation in immune cell populations generated immune signatures predicted to elicit useful tumoricidal mechanisms. In contrast, IHC analysis of human tissue microarrays revealed enhanced STING expression in HPV-related tumors and high intratumoral expression of STING correlated with increased survival. SIGNIFICANCE: STING is an important innate immune sensor of cytosolic DNA, inducing essential antiviral and antitumoral responses. This research shows that STING expression is enhanced in HPV-positive HNSCC patient tissue, with high intratumoral STING expression correlating with increased survival. In addition, STING activation in immune cell populations augmented antitumoral effects against HNSCCs, suggesting patients may benefit from the use of STING agonists in combination with traditional therapies.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/complications , Papillomavirus Infections/complications , Head and Neck Neoplasms/complications , Carcinoma, Squamous Cell/complications , Human Papillomavirus Viruses , Tumor Microenvironment
3.
Cancer Res ; 81(15): 3945-3952, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33903123

ABSTRACT

It has now become increasingly clear that viruses, which may not be directly oncogenic, can affect the biology of tumors as well as immune behavior against tumors. This has led to a fundamental question: Should tumors associated with viral infection be considered distinct from those without? Typically, viruses activate the host innate immune responses by stimulating pathogen recognition receptors and DNA-sensing pathways, including the stimulator of interferon genes (STING) pathway. However, regulation of the STING pathway in a virus-associated tumor microenvironment is poorly understood. Human papillomavirus (HPV) infection within a subset of head and neck squamous cell carcinomas (HNSCC) promotes a unique etiology and clinical outcome. For reasons currently not well understood, patients with HPV+ tumors have a better outcome in terms of both overall survival and reduced risk of recurrence compared with HPV- HNSCC. This observation may reflect a greater intrinsic immunogenicity associated with HPV infection, pertaining to innate immune system pathways activated following recognition of viral nucleotides. Here we discuss how HNSCC provides a unique model to study the STING pathway in the context of viral-induced tumor type as well as recent advances in our understanding of this pathway in HSNCC.


Subject(s)
Head and Neck Neoplasms/virology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...