Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Complement Ther Med ; 70: 102856, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35843474

ABSTRACT

OBJECTIVES: L-Glutamine was FDA-approved for sickle cell disease (SCD) in 2017, yet the mechanism(s)-of-action are poorly understood. This study investigates the potential activation of autophagy as a previously unexplored mechanism-of-benefit. DESIGN: Prospective, open-label, 8-week, phase-2 trial of oral L-glutamine (10 g TID) in patients with SCD at risk for pulmonary hypertension identified by Doppler-echocardiography by an elevated tricuspid-regurgitant-jet-velocity (TRV)≥ 2.5 m/s. Peripheral blood mononuclear cells (PBMCs) were isolated from blood samples taken from SCD patients at baseline, two, four, six and eight weeks of glutamine therapy, and from controls at baseline; BAX (pro-apoptotic marker) and LC3-II/LC3-I (autophagy marker) were measured via western blot analysis to assess apoptosis and autophagy respectively. SETTING: Comprehensive SCD Center in Oakland, California. RESULTS: Patients with SCD (n = 8) had a mean age of 44 ± 16, 50% were male; 63% Hb-SS, and mean TRV= 3.1 ± 0.7 m/s. Controls' mean age (n = 5) was 32 ± 12% and 57% were male; all were Hb-AA with a mean TRV= 1.8 ± 0.6. At baseline, SCD-PBMCs had 2-times higher levels of BAX and LC3-I versus controls (both p = 0.03). Levels of BAX expression increased by 300% after 8-weeks of glutamine supplementation (p = 0.005); LC3-I protein levels decreased while LC3-II levels increased by 70%, giving a significant increase in the LC3-II/LC3-I ratio (p = 0.02). CONCLUSION: PBMCs from glutamine-supplemented SCD patients have upregulated apoptotic and autophagy proteins. The parallel increase in BAX and the LC3-II / LC3-I ratio with glutamine supplementation suggest a possible role of autophagic cell death. The increase in apoptotic markers provide insight into a possible mechanism used by peripheral PBMCs during glutamine supplementation in patients with SCD.


Subject(s)
Anemia, Sickle Cell , Dietary Supplements , Glutamine/therapeutic use , Leukocytes, Mononuclear/physiology , Tricuspid Valve Insufficiency , Adult , Apoptosis , Autophagy , Biomarkers , Female , Humans , Male , Middle Aged , Prospective Studies , bcl-2-Associated X Protein
2.
Complement Ther Med ; 64: 102803, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35032556

ABSTRACT

OBJECTIVES: L-Glutamine is FDA-approved for sickle cell disease (SCD), yet the mechanism(s)-of-action are poorly understood. We performed a pharmacokinetics (pK) study to determine the metabolic fate of glutamine supplementation on plasma and erythrocyte amino acids in patients with SCD. DESIGN: A pK study was performed where patients with SCD fasting for > 8 h received oral L-glutamine (10 g). Blood was analyzed at baseline, 30/60/90 min/2/3/4/8 hrs. A standardized diet was administered to all participants at 3 established time-points (after 2/5/7hrs). A subset of patients also had pK studies performed without glutamine supplementation to follow normal diurnal fluctuations in amino acids. SETTING: Comprehensive SCD Center in Oakland, California RESULTS: Five patients with SCD were included, three of whom performed pK studies both with and without glutamine supplementation. Average age was 50.6 ± 5.6 years, 60% were female, 40% SS, 60% SC. Plasma glutamine levels increased significantly after oral glutamine supplementation, compared to minimal fluctuations with diet. Plasma glutamine concentration peaked within 30-min of ingestion (p = 0.01) before decreasing to a plateau by 2-h that remained higher than baseline by 8 h. Oral glutamine also increased plasma arginine concentration, which peaked by 4-h (p = 0.03) and remained elevated through 8-h. Erythrocyte glutamine levels began to increase by 8-h, while erythrocyte arginine concentration peaked at 4-h. CONCLUSIONS: Oral glutamine supplementation acutely improved glutamine and arginine bioavailability in both plasma and erythrocytes. This is the first study to demonstrate that glutamine therapy increases arginine bioavailability and may provide insight into shared mechanisms-of-action between these conditionally-essential amino acids.


Subject(s)
Anemia, Sickle Cell , Glutamine , Amino Acids , Anemia, Sickle Cell/drug therapy , Dietary Supplements , Erythrocytes , Female , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...