Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Phys Rev E ; 93(6): 063206, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27415376

ABSTRACT

We present an approximation for calculating the equation of state (EOS) of warm and hot dense matter that is built on the previously published pseudoatom molecular dynamics (PAMD) model of dense plasmas [Starrett et al., Phys. Rev. E 91, 013104 (2015)PLEEE81539-375510.1103/PhysRevE.91.013104]. While the EOS calculation with PAMD was previously limited to orbital-free density functional theory (DFT), the new approximation presented here allows a Kohn-Sham DFT treatment of the electrons. The resulting EOS thus includes a quantum mechanical treatment of the electrons with a self-consistent model of the ionic structure, while remaining tractable at high temperatures. The method is validated by comparisons with pressures from ab initio simulations of Be, Al, Si, and Fe. The EOS in the Thomas-Fermi approximation shows remarkable thermodynamic consistency over a wide range of temperatures for aluminum. We calculate the principal Hugoniots of aluminum and silicon up to 500 eV. We find that the ionic structure of the plasma has a modest effect that peaks at temperatures of a few eV and that the features arising from the electronic structure agree well with ab initio simulations.

2.
Article in English | MEDLINE | ID: mdl-26465569

ABSTRACT

The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)]10.1038/nphoton.2015.41 with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1-100 eV and densities of 2.7-8.1g/cm^{3}. We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experiment of Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)]PRLTAO0031-900710.1103/PhysRevLett.110.065001. We also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.

3.
Science ; 350(6256): 64-7, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26272904

ABSTRACT

Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10(-6) and an effective temperature of 600 to 750 kelvin. For this age and luminosity, "hot-start" formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the "cold-start" core-accretion process that may have formed Jupiter.

4.
Article in English | MEDLINE | ID: mdl-26172810

ABSTRACT

The ion-ion dynamic structure factor of warm dense matter is determined using the recently developed pseudoatom molecular dynamics method [Starrett et al., Phys. Rev. E 91, 013104 (2015)]. The method uses density functional theory to determine ion-ion pair interaction potentials that have no free parameters. These potentials are used in classical molecular dynamics simulations. This constitutes a computationally efficient and realistic model of dense plasmas. Comparison with recently published simulations of the ion-ion dynamic structure factor and sound speed of warm dense aluminum finds good to reasonable agreement. Using this method, we make predictions of the ion-ion dynamical structure factor and sound speed of a warm dense mixture-equimolar carbon-hydrogen. This material is commonly used as an ablator in inertial confinement fusion capsules, and our results are amenable to direct experimental measurement.

5.
Article in English | MEDLINE | ID: mdl-25679720

ABSTRACT

An approach to simulating warm and hot dense matter that combines density-functional-theory-based calculations of the electronic structure to classical molecular dynamics simulations with pair interaction potentials is presented. The method, which we call pseudoatom molecular dynamics, can be applied to single-component or multicomponent plasmas. It gives equation of state and self-diffusion coefficients with an accuracy comparable to orbital-free molecular dynamics simulations but is computationally much more efficient.

6.
Article in English | MEDLINE | ID: mdl-25353587

ABSTRACT

We present calculations of x-ray scattering spectra based on ionic and electronic structure factors that are computed from a new model for warm dense matter. In this model, which has no free parameters, the ionic structure is determined consistently with the electronic structure of the bound and free states. The x-ray scattering spectrum is thus fully determined by the plasma temperature, density and nuclear charge, and the experimental parameters. The combined model of warm dense matter and of the x-ray scattering theory is validated against an experiment on room-temperature, solid beryllium. It is then applied to experiments on warm dense beryllium and aluminum. Generally good agreement is found with the experiments. However, some significant discrepancies are revealed and appraised. Based on the strength of our model, we discuss the current state of x-ray scattering experiments on warm dense matter and their potential to determine plasma parameters, to discriminate among models, and to reveal interesting and difficult to model physics in dense plasmas.


Subject(s)
Algorithms , Models, Chemical , Plasma Gases/chemistry , Plasma Gases/radiation effects , Spectrometry, X-Ray Emission/methods , Computer Simulation , Electrons
7.
Article in English | MEDLINE | ID: mdl-25314550

ABSTRACT

In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom (AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.


Subject(s)
Carbon/chemistry , Hot Temperature , Hydrogen/chemistry , Molecular Dynamics Simulation , Electrons , Quantum Theory
8.
Article in English | MEDLINE | ID: mdl-23410443

ABSTRACT

The results of a numerical implementation of the recent average atom model including ion-ion correlations of Starrett and Saumon [Phys. Rev. E 85, 026403 (2012)] are presented. The solution is obtained by coupling an average atom model to a two-component plasma model of electrons and ions. The two models are solved self-consistently and results are given in the form of pair distribution functions. Ion-ion pair distribution functions for hydrogen, carbon, aluminum, and iron are compared to quantum and Thomas-Fermi molecular dynamics simulations as well as path-integral Monte Carlo calculations and good agreement is found for a wide variety of plasma conditions in the warm and hot dense matter regime.


Subject(s)
Algorithms , Ions/chemistry , Models, Chemical , Plasma Gases/chemistry , Computer Simulation , Electron Transport
9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(2 Pt 2): 026403, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22463333

ABSTRACT

An average atom model for dense ionized fluids that includes ion correlations is presented. The model assumes spherical symmetry and is based on density functional theory, the integral equations for uniform fluids, and a variational principle applied to the grand potential. Starting from density functional theory for a mixture of classical ions and quantum mechanical electrons, an approximate grand potential is developed, with an external field being created by a central nucleus fixed at the origin. Minimization of this grand potential with respect to electron and ion densities is carried out, resulting in equations for effective interaction potentials. A third condition resulting from minimizing the grand potential with respect to the average ion charge determines the noninteracting electron chemical potential. This system is coupled to a system of point ions and electrons with an ion fixed at the origin, and a closed set of equations is obtained. Solution of these equations results in a self-consistent electronic and ionic structure for the plasma as well as the average ionization, which is continuous as a function of temperature and density. Other average atom models are recovered by application of simplifying assumptions.

10.
Science ; 292(5517): 698-702, 2001 Apr 27.
Article in English | MEDLINE | ID: mdl-11264524

ABSTRACT

The Milky Way galaxy contains a large, spherical component which is believed to harbor a substantial amount of unseen matter. Recent observations indirectly suggest that as much as half of this "dark matter" may be in the form of old, very cool white dwarfs, the remnants of an ancient population of stars as old as the galaxy itself. We conducted a survey to find faint, cool white dwarfs with large space velocities, indicative of their membership in the galaxy's spherical halo component. The survey reveals a substantial, directly observed population of old white dwarfs, too faint to be seen in previous surveys. This newly discovered population accounts for at least 2 percent of the halo dark matter. It provides a natural explanation for the indirect observations, and represents a direct detection of galactic halo dark matter.

11.
Astrophys J ; 534(1): L97-L100, 2000 May 01.
Article in English | MEDLINE | ID: mdl-10790080

ABSTRACT

The recent discovery that the close-in extrasolar giant planet HD 209458b transits its star has provided a first-of-its-kind measurement of the planet's radius and mass. In addition, there is a provocative detection of the light reflected off of the giant planet tau Bootis b. Including the effects of stellar irradiation, we estimate the general behavior of radius/age trajectories for such planets and interpret the large measured radii of HD 209458b and tau Boo b in that context. We find that HD 209458b must be a hydrogen-rich gas giant. Furthermore, the large radius of a close-in gas giant is not due to the thermal expansion of its atmosphere but to the high residual entropy that remains throughout its bulk by dint of its early proximity to a luminous primary. The large stellar flux does not inflate the planet but retards its otherwise inexorable contraction from a more extended configuration at birth. This implies either that such a planet was formed near its current orbital distance or that it migrated in from larger distances (>/=0.5 AU), no later than a few times 107 yr of birth.

12.
Science ; 272(5270): 1919-21, 1996 Jun 28.
Article in English | MEDLINE | ID: mdl-8658164

ABSTRACT

Theoretical spectra and evolutionary models that span the giant planet-brown dwarf continuum have been computed based on the recent discovery of the brown dwarf Gliese 229 B. A flux enhancement in the 4- to 5-micrometer wavelength window is a universal feature from jovian planets to brown dwarfs. Model results confirm the existence of methane and water in the spectrum of Gliese 229 B and indicate that its mass is 30 to 55 jovian masses. Although these calculations focus on Gliese 229 B, they are also meant to guide future searches for extrasolar giant planets and brown dwarfs.


Subject(s)
Astronomy , Extraterrestrial Environment , Methane/analysis , Water/analysis , Astronomical Phenomena , Atmosphere
13.
Phys Rev A ; 46(4): 2084-2100, 1992 Aug 15.
Article in English | MEDLINE | ID: mdl-9908345
14.
Phys Rev A ; 44(8): 5122-5141, 1991 Oct 15.
Article in English | MEDLINE | ID: mdl-9906567
15.
Phys Rev Lett ; 62(20): 2397-2400, 1989 May 15.
Article in English | MEDLINE | ID: mdl-10039975
SELECTION OF CITATIONS
SEARCH DETAIL
...