Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 112022 06 28.
Article in English | MEDLINE | ID: mdl-35762582

ABSTRACT

Members of the bacterial T6SS amidase effector (Tae) superfamily of toxins are delivered between competing bacteria to degrade cell wall peptidoglycan. Although Taes share a common substrate, they exhibit distinct antimicrobial potency across different competitor species. To investigate the molecular basis governing these differences, we quantitatively defined the functional determinants of Tae1 from Pseudomonas aeruginosa PAO1 using a combination of nuclear magnetic resonance and a high-throughput in vivo genetic approach called deep mutational scanning (DMS). As expected, combined analyses confirmed the role of critical residues near the Tae1 catalytic center. Unexpectedly, DMS revealed substantial contributions to enzymatic activity from a much larger, ring-like functional hot spot extending around the entire circumference of the enzyme. Comparative DMS across distinct growth conditions highlighted how functional contribution of different surfaces is highly context-dependent, varying alongside composition of targeted cell walls. These observations suggest that Tae1 engages with the intact cell wall network through a more distributed three-dimensional interaction interface than previously appreciated, providing an explanation for observed differences in antimicrobial potency across divergent Gram-negative competitors. Further binding studies of several Tae1 variants with their cognate immunity protein demonstrate that requirements to maintain protection from Tae activity may be a significant constraint on the mutational landscape of tae1 toxicity in the wild. In total, our work reveals that Tae diversification has likely been shaped by multiple independent pressures to maintain interactions with binding partners that vary across bacterial species and conditions.


Subject(s)
Amidohydrolases , Peptidoglycan , Amidohydrolases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Cell Wall/metabolism , Peptidoglycan/metabolism , Pseudomonas aeruginosa/metabolism
2.
Mol Biol Cell ; 31(20): 2207-2218, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32697622

ABSTRACT

The chromosomal passenger complex (CPC), which includes the kinase Aurora B, is a master regulator of meiotic and mitotic processes that ensure the equal segregation of chromosomes. Sgo1 is thought to play a major role in the recruitment of the CPC to chromosomes, but the molecular mechanism and contribution of Sgo1-dependent CPC recruitment is currently unclear. Using Xenopus egg extracts and biochemical reconstitution, we found that Sgo1 interacts directly with the dimerization domain of the CPC subunit Borealin. Borealin and the PP2A phosphatase complex can bind simultaneously to the coiled-coil domain of Sgo1, suggesting that Sgo1 can integrate Aurora B and PP2A activities to modulate Aurora B substrate phosphorylation. A Borealin mutant that specifically disrupts the Sgo1-Borealin interaction results in defects in CPC chromosomal recruitment and Aurora B-dependent spindle assembly, but not in spindle assembly checkpoint signaling at unattached kinetochores. These findings establish a direct molecular connection between Sgo1 and the CPC and have major implications for the different functions of Aurora B, which promote the proper interaction between spindle microtubules and chromosomes.


Subject(s)
Cell Cycle Proteins/metabolism , M Phase Cell Cycle Checkpoints/physiology , Animals , Aurora Kinase B/metabolism , Cell Cycle Proteins/physiology , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Dimerization , Kinetochores/metabolism , Microtubules/metabolism , Mitosis , Phosphorylation , Signal Transduction , Spindle Apparatus/metabolism , Xenopus Proteins , Xenopus laevis
3.
Science ; 359(6373): 339-343, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29269420

ABSTRACT

Accurate chromosome segregation requires the proper assembly of kinetochore proteins. A key step in this process is the recognition of the histone H3 variant CENP-A in the centromeric nucleosome by the kinetochore protein CENP-N. We report cryo-electron microscopy (cryo-EM), biophysical, biochemical, and cell biological studies of the interaction between the CENP-A nucleosome and CENP-N. We show that human CENP-N confers binding specificity through interactions with the L1 loop of CENP-A, stabilized by electrostatic interactions with the nucleosomal DNA. Mutational analyses demonstrate analogous interactions in Xenopus, which are further supported by residue-swapping experiments involving the L1 loop of CENP-A. Our results are consistent with the coevolution of CENP-N and CENP-A and establish the structural basis for recognition of the CENP-A nucleosome to enable kinetochore assembly and centromeric chromatin organization.


Subject(s)
Centromere Protein A/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Nucleosomes/metabolism , Amino Acid Sequence , Animals , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Chromosomal Proteins, Non-Histone/ultrastructure , Cryoelectron Microscopy , DNA Mutational Analysis , Humans , Kinetochores/metabolism , Protein Structure, Secondary , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...