Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 208: 114465, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-34826673

ABSTRACT

Pharmaceutical effluents are complex media containing hundreds of compounds including active ingredients, intermediate products and unknown impurities. Bringing an industrial wastewater treatment plant (WWTP) into compliance with European directives requires a thorough analysis of the effluent. In this study, we demonstrate how online comprehensive two-dimensional liquid chromatography (on-line LC × LC) hyphenated to high resolution mass spectrometry (HRMS) can be a powerful analytical methodology to monitoring the outlet water, by analysing the content of known molecules while characterizing unknown compounds. Reversed phase liquid chromatography (RPLC) was used in both dimensions, with a penta-fluoro-phenyl silica-based column at neutral pH in the first dimension (1D) and a C18 column at acidic pH in the second one (2D). The conditions were optimized for a total analysis time of 60 min. The variability of both retention times and peak areas was evaluated. The average standard deviation on retention times was found to be less than 0.1 s in 2D. The relative standard deviation on peak area was about 7% for run-to-run analysis. This analytical approach, applied to the pharmaceutical effluents before (inlet) and after (outlet) wastewater treatment permitted to detect 240 compounds. These included 27 priority pharmaceutical products, 8 of which were of very high priority and their concentrations could be compared to target values. The comparison of 2D-LC and 1D-LC approaches clearly highlights the power of on-line RPLC x RPLC technique, which allows both targeted quantitative analysis and non-targeted qualitative analysis of pharmaceutical effluents.


Subject(s)
Pharmaceutical Preparations , Plants, Medicinal , Water Purification , Chromatography, Reverse-Phase , Mass Spectrometry , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...