Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38203955

ABSTRACT

The structural systems of residential buildings in many developed countries have widely utilized reinforced concrete as the most common solution in construction systems since the early 20th century. The durability of reinforced concrete columns and beams is compromised, in most cases, by pathologies caused by the corrosion of their reinforcements. This study analyses the corrosion processes induced by carbonation in 25 buildings with reinforced concrete structures. The models estimate the service life of reinforced concrete elements by differentiating between the initiation period and the propagation period of damage, considering two possible stages: the time of corrosion propagation until the cracking of the concrete cover, and the time of propagation until a loss of section is considered unacceptable for structural safety. However, the mathematical expressions that model the propagation periods consider the same corrosion rate in both cases. This research has found that the average corrosion rate in elements with an unacceptable loss of reinforcement section was in the order of 8 times higher than the corrosion rate in cracked columns and beams without a loss of reinforcement. This opens up a path to improve the definition of the different stages experienced by a reinforced concrete element suffering corrosion of its reinforcements due to carbonation, because once the concrete has cracked, the corrosion rate increases significantly.

2.
Materials (Basel) ; 15(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35160690

ABSTRACT

Some reinforced concrete structures must be repaired at an early stage in their life due to the oxidation processes suffered by their reinforcements; such processes involve serious pathologies that affect the stability and safety of buildings. Spanish legislation distinguishes several classes of environments, with non-aggressive and normal exposure providing a longer useful life of the structure. The present study shows that some structural elements in reinforced concrete, mainly the pillars in the area of contact with the ground, are exposed to significant corrosion by carbonation. This position of the structural elements dramatically and abruptly shortens the useful life of the models provided for the current regulations. A total of 17 pillars in 10 buildings of different ages and locations in the Spanish Mediterranean area, not subject to the presence of chlorides, have been analyzed. These buildings are situated in environments considered by the standard as normal and non-aggressive. The actual carbonation that these elements present have been compared with that which can be derived from the model established by Spanish regulations. Of these pillars, 14 present a carbonation higher than that derived from the model, and the last three pillars largely conform to the figures of the model. This significant deviation shows the need for a revision of the Spanish EHE 08 regulation, which should include aspects such as the action of dampness by capillarity and the differences in electrochemical potential between the different materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...