Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 478(2): 779-87, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25526671

ABSTRACT

Although drying is widely applied during the manufacturing of solid dosage forms, its potential effect on the product's (key) properties is often underestimated. Hence, the present study addresses drying related modifications of wet-extruded pellets comprising calcium stearate (CaSt, matrix former) and ibuprofen (model drug). After spheronization, the pellets were tray dried at different temperatures. The dried pellets were evaluated regarding their microstructure, the ibuprofen distribution, solid state modifications and the resulting in-vitro dissolution profiles. The ibuprofen distribution profiles along the pellets' cross-sections varied for the different drying conditions. The profiles turned from inhomogeneous to uniform with increasing drying temperature. Temperatures above 20°C yielded solid state modifications, including ibuprofen transition into the amorphous state and the formation of eutectic compositions. As none of the batches exhibited a high specific surface area associated with an open, well-interconnected pore system, the dissolution profiles were a function of the ibuprofen distribution. Differences in the solid state did not contribute to the dissolution behavior, since the CaSt matrix did not swell or dissolve in the dissolution medium. These findings show that drying may considerably affect the final product properties even for moderate drying conditions.


Subject(s)
Drug Compounding/methods , Ibuprofen/chemistry , Stearic Acids/chemistry , Desiccation , Drug Liberation , Solubility , Spectrum Analysis, Raman , Surface Properties , Temperature
2.
Mol Pharm ; 11(2): 599-609, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24400735

ABSTRACT

Drying is a common pharmaceutical process, whose potential to alter the final drug properties-even at relatively low temperatures-is often neglected. The present study addresses the impact of drying at 20 and 50 °C on wet-extruded calcium stearate (CaSt) pellets. Drying at 20 °C caused the majority of ibuprofen to accumulate at the pellet surface due to a strong convective flow from the pellet's center to the surface. In contrast, pellets dried at 50 °C still contained ibuprofen in the pellet's interior due to the higher drying rate and the associated film breakage during drying. Moreover, the higher drying temperature caused CaSt to form a second lamellar phase and ibuprofen to convert (partly) into its amorphous state. Overall, the drying process affected the solid state and the spatial ibuprofen distribution within the pellet. Knowledge of these effects can aid in tailoring advanced multipellet formulations.


Subject(s)
Calcium/chemistry , Chemistry, Pharmaceutical , Cold Temperature , Desiccation , Ibuprofen/chemistry , Ibuprofen/metabolism , Stearates/chemistry , Calorimetry, Differential Scanning , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...