Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 94(4)2018 04 01.
Article in English | MEDLINE | ID: mdl-29514253

ABSTRACT

Biological soil crusts (BSCs) are amalgamations of autotrophic, heterotrophic and saprotrophic organisms. In the Polar Regions, these unique communities occupy essential ecological functions such as primary production, nitrogen fixation and ecosystem engineering. Here, we present the first molecular survey of BSCs from the Arctic and Antarctica focused on both eukaryotes and prokaryotes as well as passive and active biodiversity. Considering sequence abundance, Bryophyta is among the most abundant taxa in all analyzed BSCs suggesting that they were in a late successional stage. In terms of algal and cyanobacterial biodiversity, the genera Chloromonas, Coccomyxa, Elliptochloris and Nostoc were identified in all samples regardless of origin confirming their ubiquitous distribution. For the first time, we found the chrysophyte Spumella to be common in polar BSCs as it was present in all analyzed samples. Co-occurrence analysis revealed the presence of sulfur metabolizing microbes indicating that BSCs also play an important role for the sulfur cycle. In general, phototrophs were most abundant within the BSCs but there was also a diverse community of heterotrophs and saprotrophs. Our results show that BSCs are unique microecosystems in polar environments with an unexpectedly high biodiversity.


Subject(s)
Bryophyta/genetics , Chlorophyceae/genetics , Chlorophyta/genetics , DNA Barcoding, Taxonomic/methods , Nostoc/genetics , Soil , Stramenopiles/genetics , Antarctic Regions , Arctic Regions , Autotrophic Processes/physiology , Biodiversity , Bryophyta/classification , Chlorophyceae/classification , Chlorophyta/classification , Cold Climate , Cyanobacteria/classification , Cyanobacteria/genetics , Ecosystem , Heterotrophic Processes/physiology , Nitrogen Fixation , Nostoc/classification , Soil Microbiology , Stramenopiles/classification , Sulfur/metabolism
2.
J Phycol ; 54(2): 198-214, 2018 04.
Article in English | MEDLINE | ID: mdl-29278416

ABSTRACT

In the present study, three new strains of the rare volvocalean green alga Lobomonas were isolated from field-collected samples, one from Sardinia (Italy) and two from Argentina, and comparatively studied. The Sardinian and one of the Argentinian strains were identified as Lobomonas francei, the type species of the genus, whereas the second Argentinian strain corresponded to L. panduriformis. Two additional nominal species of Lobomonas from culture collections (L. rostrata and L. sphaerica) were included in the analysis and shown to be morphologically and molecularly identical to the L. francei strains. The presence, number, and shapes of cell wall lobes, the diagnostic criterion of Lobomonas, were shown to be highly variable depending on the chemical composition of the culture medium used. The analyses by SEM gave evidence that the cell wall lobes in Lobomonas originate at the junctions of adjacent cell wall plates by extrusion of gelatinous material. The four L. francei strains had identical nrRNA gene sequences and differed by only one or two substitutions in the ITS1 + ITS2 sequences. In the phylogenetic analyses, L. francei and L. panduriformis were sister taxa; however, another nominal Lobomonas species (L. monstruosa) did not belong to this genus. Lobomonas, together with taxa designated as Vitreochlamys, Tetraspora, and Paulschulzia, formed a monophyletic group that in the combined analyses was sister to the "Chlamydomonas/Volvox-clade." Based on these results, Lobomonas was revised, the diagnosis of the type species emended, a lectotype and an epitype designated, and several taxa synonymized with the type species.


Subject(s)
Volvocida/classification , Algal Proteins/analysis , Argentina , Italy , Microscopy, Electron, Scanning , Phylogeny , RNA, Algal/analysis , Sequence Analysis, RNA , Volvocida/cytology , Volvocida/genetics , Volvocida/ultrastructure
3.
PLoS One ; 8(3): e59565, 2013.
Article in English | MEDLINE | ID: mdl-23555709

ABSTRACT

In 2007, a novel, putatively photosynthetic picoeukaryotic lineage, the 'picobiliphytes', with no known close eukaryotic relatives, was reported from 18S environmental clone library sequences and fluorescence in situ hybridization. Although single cell genomics later showed these organisms to be heterotrophic rather than photosynthetic, until now this apparently widespread group of pico-(or nano-)eukaryotes has remained uncultured and the organisms could not be formally recognized. Here, we describe Picomonas judraskeda gen. et sp. nov., from marine coastal surface waters, which has a 'picobiliphyte' 18S rDNA signature. Using vital mitochondrial staining and cell sorting by flow cytometry, a single cell-derived culture was established. The cells are biflagellate, 2.5-3.8×2-2.5 µm in size, lack plastids and display a novel stereotypic cycle of cell motility (described as the "jump, drag, and skedaddle"-cycle). They consist of two hemispherical parts separated by a deep cleft, an anterior part that contains all major cell organelles including the flagellar apparatus, and a posterior part housing vacuoles/vesicles and the feeding apparatus, both parts separated by a large vacuolar cisterna. From serial section analyses of cells, fixed at putative stages of the feeding cycle, it is concluded that cells are not bacterivorous, but feed on small marine colloids of less than 150 nm diameter by fluid-phase, bulk flow endocytosis. Based on the novel features of cell motility, ultrastructure and feeding, and their isolated phylogenetic position, we establish a new phylum, Picozoa, for Picomonas judraskeda, representing an apparently widespread and ecologically important group of heterotrophic picoeukaryotes, formerly known as 'picobiliphytes'.


Subject(s)
Eukaryota/isolation & purification , Cell Movement , Eukaryota/cytology , Eukaryota/genetics , Eukaryota/ultrastructure , Flow Cytometry , Microscopy, Electron , Mitochondria/metabolism , Phylogeny , RNA, Ribosomal, 18S/genetics
4.
PLoS One ; 7(2): e31165, 2012.
Article in English | MEDLINE | ID: mdl-22355342

ABSTRACT

With the advent of molecular phylogenetic techniques the polyphyly of naked filose amoebae has been proven. They are interspersed in several supergroups of eukaryotes and most of them already found their place within the tree of life. Although the 'vampire amoebae' have attracted interest since the middle of the 19th century, the phylogenetic position and even the monophyly of this traditional group are still uncertain. In this study clonal co-cultures of eight algivorous vampyrellid amoebae and the respective food algae were established. Culture material was characterized morphologically and a molecular phylogeny was inferred using SSU rDNA sequence comparisons. We found that the limnetic, algivorous vampyrellid amoebae investigated in this study belong to a major clade within the Endomyxa Cavalier-Smith, 2002 (Cercozoa), grouping together with a few soil-dwelling taxa. They split into two robust clades, one containing species of the genus Vampyrella Cienkowski, 1865, the other containing the genus Leptophrys Hertwig & Lesser, 1874, together with terrestrial members. Supported by morphological data these clades are designated as the two families Vampyrellidae Zopf, 1885, and Leptophryidae fam. nov. Furthermore the order Vampyrellida West, 1901 was revised and now corresponds to the major vampyrellid clade within the Endomyxa, comprising the Vampyrellidae and Leptophryidae as well as several environmental sequences. In the light of the presented phylogenetic analyses morphological and ecological aspects, the feeding strategy and nutritional specialization within the vampyrellid amoebae are discussed.


Subject(s)
Amoeba/genetics , Cercozoa/genetics , Chiroptera/genetics , DNA, Ribosomal/genetics , Evolution, Molecular , Phylogeny , Animals , Coculture Techniques , Cyanobacteria , Cysts , DNA, Protozoan/genetics , Feeding Behavior , Trophozoites
5.
J Phycol ; 47(1): 164-77, 2011 Feb.
Article in English | MEDLINE | ID: mdl-27021722

ABSTRACT

Previously published molecular phylogenetic analyses of the Chaetophorales (Chlorophyceae) suffered from limited taxon sampling (six genera with only a single species per genus). To test the monophyly of species-rich genera, and to analyze the phylogenetic relationships among families and genera in the Chaetophorales, we determined nuclear-encoded SSU rDNA sequences from 30 strains of Chaetophorales, performed phylogenetic analyses using various methods, and screened clades for support by unique molecular synapomorphies in the SSU rRNA secondary structure. The Schizomeridaceae and the weakly supported Aphanochaetaceae were recovered as basal lineages. The derived family Chaetophoraceae diverged into two clades: the "Uronema clade" containing unbranched filaments, and a sister clade designated as "branched Chaetophoraceae" comprising Chaetophora, Stigeoclonium, Draparnaldia, Caespitella, and Fritschiella. Although some terminal clades corresponded to genera described (e.g., Caespitella and Draparnaldia), other clades were in conflict with traditional taxonomic designations. Especially, the genera Stigeoclonium and Chaetophora were shown to be polyphyletic. The globose species Chaetophora elegans was unrelated to lobate Chaetophora spp. (e.g., Chaetophora lobata). Since the original description of Chaetophora referred to a lobate thallus organization, the latter clade represented Chaetophora sensu stricto. In consequence, C. lobata was designated as lectotype of Chaetophora. Two Stigeoclonium species, Stigeoclonium farctum Berthold and Stigeoclonium'Longipilus', diverged independently from the type species of Stigeoclonium, Stigeoclonium tenue (C. Agardh) Kütz. These results indicated that some commonly used taxonomic characters are either homoplasious or plesiomorphic and call for a reevaluation of the systematics of the Chaetophorales using novel morphological and molecular approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...