Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 16171, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758712

ABSTRACT

Bentheim Sandstone is considered a suitable conventional georeservoir rock even at great depth because of its mineral composition, homogeneity, micro- and macrostructure, and is also used as a reference material in rock deformation tests. However, a full characterization of the permeability at representative depths has never been performed. Here we report new experimental data where the permeability of Bentheim Sandstone is measured both with a simultaneous variation and with a sequential variation of three different variables to simulate georeservoir conditions. The results indicate a decrease in permeability with simulated increasing depth until 2-3 km, followed by a partial permeability recovery until 4-5 km depth. During the exhumation path, initially, permeability is unaffected, but at shallow depths, a sharp increase in permeability is observed, likely due to microcracking. These variations are a consequence of a complex interaction between stress, pore pressure and temperature, highlighting the importance of experiments considering all three variables when studying the evolution of permeability at depth. These results will aid with the accurate estimation of permeability at different georeservoir conditions.

2.
J Contam Hydrol ; 242: 103844, 2021 10.
Article in English | MEDLINE | ID: mdl-34111717

ABSTRACT

The upward migration of methane from natural gas wells associated with fracking operations may lead to contamination of groundwater resources and surface leakage. Numerical simulations of methane transport in the subsurface environment require knowledge of methane solubility in the aqueous phase. This study employs machine learning (ML) algorithms to predict methane solubility in aquatic systems for temperatures ranging from 273.15 to 518.3 K and pressures ranging from 1 to 1570 bar. Four regression algorithms including regression tree (RT), boosted regression tree (BRT), least square support vector machine (LSSVM) and Gaussian process regression (GPR) were utilized for predicting methane solubility in pure water and mixed aquatic systems containing Na+, K+, Ca2+, Mg2+, Cl- and SO4-2. The experimental data collected from the literature were used to implement the models. We used Grid search (GS), Random search (RS) and Bayesian optimization (BO) for tuning hyper-parameters of the ML models. Moreover, the predicted values of methane solubility were compared against Spivey et al. (2004) and Duan and Mao (2006) equations of state. The results show that the BRT-BO model is the most rigorous model for the prediction task. The coefficient of determination (R2) between experimental and predicted values is 0.99 and the mean squared error (MSE) is 1.19 × 10-7. The performance of the BRT-BO model is satisfactory, showing an acceptable agreement with experimental data. The comparison results demonstrated the superior performance of the BRT-BO model for predicting methane solubility in aquatic systems over a span of temperature, pressure and ionic strength that occurs in deep marine environments.


Subject(s)
Methane , Water , Algorithms , Bayes Theorem , Machine Learning , Seawater , Solubility
3.
Ground Water ; 58(4): 611-621, 2020 07.
Article in English | MEDLINE | ID: mdl-31576553

ABSTRACT

Inner boundary conditions describe the interaction of groundwater wells with the surrounding aquifer during pumping and are associated with well-skin damage that limits water production and water derived from wellbore storage. Pumping test evaluations of wells during immediate and early time flow require assignment of inner boundary conditions. Originally, these concepts were developed for vertical well screens, and later transferred to wellbores intersecting highly conductive structures, such as preferential flow zones in fractured and karstic systems. Conceptual models for pumping test analysis in complex bedrock geology are often simplified. Classic analytical solutions generally lump or ignore conditions that limit or enhance well productivity along the well screen at the onset of pumping. Numerical solutions can represent well drawdowns in complex geological settings, such as karst systems, more precisely than many analytical solutions by accounting for additional physical processes and avoiding assumptions and simplifications. Suitable numerical tools for flow simulations in karst are discrete pipe-continuum models that account for various physical processes such as the transient hydraulics of wellbores intersecting highly conductive structures during pumping.


Subject(s)
Groundwater , Electric Conductivity , Geology , Models, Theoretical , Water Movements , Water Wells
4.
J Contam Hydrol ; 221: 58-68, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30679092

ABSTRACT

Hydraulic fracturing in shale/tight gas reservoirs creates fracture network systems that can intersect pre-existing subsurface flow pathways, e.g. fractures, faults or abandoned wells. This way, hydraulic fracturing operations could pose environmental risks to shallow groundwater systems. This paper explores the long-term (> 30 years) flow and transport of fracturing fluids into overburden layers and groundwater aquifers through a leaky abandoned well, using the geological setting of North German Basin as a case study. A three-dimensional model consisting of 15 sedimentary layers with three hydrostratigraphic units representing the hydrocarbon reservoir, overburden, and the aquifer is built. The model considers one perforation location at the first section of the horizontal part of the well, and a discrete hydraulic fracture intersecting an abandoned well. A sensitivity analysis is carried out to quantify and understand the influence of a broad spectrum of field possibilities (reservoir properties, overburden properties, abandoned well properties and its proximity to hydraulic fractures) on the flow of fracturing fluid to shallower permeable strata. The model results suggest the spatial properties of the abandoned well as well as its distance from the hydraulic fracture are the most important factors influencing the vertical flow of fracturing fluid. It is observed that even for various field set-tings, only a limited amount of fracturing fluid can reach the aquifer in a long-term period.


Subject(s)
Groundwater , Hydraulic Fracking , Natural Gas , Oil and Gas Fields , Water Wells
5.
Isotopes Environ Health Stud ; 52(6): 682-93, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27237686

ABSTRACT

The Tanour spring is one of the several karst springs located in the northern part of Jordan. Water samples from the Tanour spring and precipitation were collected in the area of Ajloun in NW Jordan for the analysis of stable oxygen and hydrogen isotopes to evaluate the spring response to precipitation events. Rainwater and snow samples were collected from different elevations during winters of 2013-2014 and 2014-2015. In addition, spring samples were collected between December 2014 and March 2015. δ(18)O values in rainwater vary from -3.26 to -17.34 ‰ (average: -7.84 ± 3.23 ‰), while δ(2)H values range between -4.4 and -110.4 ‰ (average: -35.7 ± 25.0 ‰). Deuterium excess ranges from 17.8 to 34.1 ‰ (average: 27.1 ± 4.0 ‰). The Local Meteoric Water Line for the study area was calculated to be δ(2)H = 7.66*δ(18)O + 24.43 (R(2) = 0.98). Pre-event spring discharge showed variation in δ(18)O (range -6.29 to -7.17 ‰; average -6.58 ± 0.19 ‰) and δ(2)H values (range -28.8 to -32.7 ‰; average: -30.5 ± 1.0 ‰). In contrast, δ(18)O and δ(2)H rapidly changed to more negative values during rainfall and snowmelt events and persisted for several days before returning to background values. Spring water temperature, spring discharge, and turbidity followed the trend in isotopic composition during and after the precipitation events. The rapid change in the isotopic composition, spring discharge, water temperature, and turbidity in response to recharge events is related to fast water travel times and low storage capacity in the conduit system of the karst aquifer. Based on the changes in the isotopic composition of spring water after the precipitation events, the water travel time in the aquifer is in the order of 5-11 days.


Subject(s)
Deuterium/analysis , Oxygen Isotopes/analysis , Rain , Seasons , Environmental Monitoring/methods , Groundwater/analysis , Jordan
6.
Ground Water ; 54(1): 15-22, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25801278

ABSTRACT

A new type of vertical circulation well (VCW) is used for groundwater dewatering at construction sites. This type of VCW consists of an abstraction screen in the upper part and an injection screen in the lower part of a borehole, whereby drawdown is achieved without net withdrawal of groundwater from the aquifer. The objective of this study is to evaluate the operation of such wells including the identification of relevant factors and parameters based on field data of a test site and comprehensive numerical simulations. The numerical model is able to delineate the drawdown of groundwater table, defined as free-surface, by coupling the arbitrary Lagrangian-Eulerian algorithm with the groundwater flow equation. Model validation is achieved by comparing the field observations with the model results. Eventually, the influences of selected well operation and aquifer parameters on drawdown and on the groundwater flow field are investigated by means of parameter sensitivity analysis. The results show that the drawdown is proportional to the flow rate, inversely proportional to the aquifer conductivity, and almost independent of the aquifer anisotropy in the direct vicinity of the well. The position of the abstraction screen has a stronger effect on drawdown than the position of the injection screen. The streamline pattern depends strongly on the separation length of the screens and on the aquifer anisotropy, but not on the flow rate and the horizontal hydraulic conductivity.


Subject(s)
Groundwater , Models, Theoretical , Water Movements , Anisotropy , Water Wells
7.
Sci Total Environ ; 514: 450-8, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25687671

ABSTRACT

In this study, four one-dimensional flow and transport models based on the data of a field scale experiment in Greece were constructed to investigate the transport behavior of sixteen organic trace pollutants during soil aquifer treatment. At the site, tap water and treated wastewater were intermittently infiltrated into a porous aquifer via a small pilot pond. Electrical conductivity data was used to calibrate the non-reactive transport models. Transport and attenuation of the organic trace pollutants were simulated assuming 1st order degradation and linear adsorption. Sorption was found to be largely insignificant at this site for the compounds under investigation. In contrast, flow path averaged first order degradation rate constants were mostly higher compared to the literature and lay between 0.036 d(-1) for clofibric acid and 0.9 d(-1) for ibuprofen, presumably owing to the high temperatures and a well adapted microbial community originating from the wastewater treatment process. The study highlights the necessity to obtain intrinsic attenuation parameters at each site, as findings cannot easily be transferred from one site to another.


Subject(s)
Environmental Monitoring , Groundwater/chemistry , Models, Chemical , Organic Chemicals/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Adsorption , Greece , Soil/chemistry , Water Movements
8.
Sci Total Environ ; 506-507: 338-43, 2015 Feb 15.
Article in English | MEDLINE | ID: mdl-25460968

ABSTRACT

The increasing pressure on drinking water resources necessitates an efficient management of potential and actual drinking water resources. Karst aquifers play a key role in the supply of the world's population with drinking water. Around one quarter of all drinking water is produced from these types of aquifers. Unfortunately due to the aquifer characteristics with extremely high hydraulic conductivities and short residence times, these systems are vulnerable to contamination. For successful management, a fundamental understanding of mass transport and attenuation processes with respect to potential contaminants is vital. In this study, a multitracer experiment was performed in a karst aquifer in SW-Germany for determining the attenuation capacity of a karst environment by assessing the environmental fate of selected relevant micropollutants. Uranine, acesulfame and carbamazepine were injected into a sinkhole as reference tracers together with the reactive compounds atenolol, caffeine, cyclamate, ibuprofen and paracetamol (also known as acetaminophen). The breakthrough of the tracers was monitored at a karst spring at a distance of ca. 3 km. The breakthrough curves of the reactive compounds were interpreted relative to the reference substances. No significant retardation was found for any of the investigated micropollutants. The determined half-lives of the reactive compounds range from 38 to 1,400 h (i.e. persistent within the investigation period) in the following order (from high to no observed attenuation): paracetamol>atenolol≈ibuprofen>caffeine≫cyclamate. The attenuation rates are generally in agreement with studies from other environmental compartments. The occurrence of the biotransformation product atenolol acid served as evidence for in-situ biodegradation within the aquifer system.


Subject(s)
Environmental Monitoring/methods , Groundwater/chemistry , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Germany , Half-Life , Water Movements
9.
Environ Sci Pollut Res Int ; 22(6): 4631-43, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25323407

ABSTRACT

This study presents chances and challenges associated with the application of organic micro-pollutants (OMPs) as indicators in karst system characterization. The methodology and options of possible indications were evaluated based on the interpretation of the spatial distribution of 54 compounds in groundwater in combination with a complex geological setting consisting of multiple aquifer horizons and tectonic faults. A high variety of OMPs are released mainly in an urban area leading to concentrations of several nanograms per liter up to micrograms per liter, which are detectable using a high-performance liquid chromatography with subsequent tandem mass spectrometry (HPLC-MS/MS) method. Since characteristic patterns of spatial distribution were repeatedly observed during a 2-year observation period, important criteria of the aforementioned indicator application are fulfilled. Triazoles, compounds with recent high emission rates, could be successfully applied for the identification of flow directions and the delineation of catchment areas. Concentrations and the number of OMPs are believed to be dependent on properties of covering rock layers. Therefore, OMPs can also be used as a validation tool for vulnerability mapping. Compounds, such as triazines, persistent in the system for more than two decades, demonstrate the interaction between different parts of the aquifer system and the hydraulic characteristics of a tectonic fault zone. Such indicator potentials complement those of artificial tracer tests. Point sources of OMPs and their impact on groundwater could be identified qualitatively. In combination with the interpretation of the geological setting, the distribution of OMPs provides essential information for the development of a conceptual hydrogeological model.


Subject(s)
Groundwater/chemistry , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Carbonates/chemistry , Chromatography, High Pressure Liquid , Germany , Hydrology , Tandem Mass Spectrometry
10.
J Environ Manage ; 124: 25-39, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23603773

ABSTRACT

This paper describes an integrated approach of site suitability mapping and ranking of the most suitable sites, for the implementation of Managed Aquifer Recharge (MAR) projects, using spatial multicriteria decision analysis (SMCDA) techniques and mathematical modelling. The SMCDA procedure contains constraint mapping, site suitability analysis with criteria standardization and weighting, criteria overlay by analytical hierarchy process (AHP) combined with weighted linear combination (WLC) and ordered weighted averaging (OWA), and sensitivity analysis. The hydrogeological impacts of the selected most suitable sites were quantified by using groundwater flow and transport modelling techniques. Finally, ranking of the selected sites was done with the WLC method. The integrated approach is demonstrated by a case study in the coastal aquifer of North Gaza. Constraint mapping shows that 50% of the total study area is suitable for MAR implementation. About 25% of the total area is "very good" and 25% percent is "good" for MAR, according to the site suitability analysis. Six locations were selected and ranked against six representative decision criteria. Long term (year 2003 to year 2040) groundwater flow and transport simulations were performed to quantify the selected criteria under MAR project operation conditions at the selected sites. Finally, the suitability mapping and hydrogeological investigation recommends that the location of the existing infiltration ponds, constructed near the planned North Gaza Wastewater Treatment Plant (NGWWTP) is most suitable for MAR project implementation. This paper concludes that mathematical modelling should be combined with the SMCDA technique in order to select the best location for MAR project implementation. Besides MAR project implementation, the generalised approach can be applicable for any other water resources development project that deals with site selection and implementation.


Subject(s)
Geographic Information Systems , Groundwater , Models, Statistical , Spatial Analysis , Israel
11.
Sci Total Environ ; 443: 438-45, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23208277

ABSTRACT

Fifty-four different organic micro-pollutants (OMPs) including pharmaceuticals, pesticides, corrosion inhibitors and other typical wastewater compounds such as caffeine are repeatedly analyzed in approximately fifty groundwater observation points in a complex faulted and fractured carbonate aquifer system consisting of three spring catchment areas. With the applied HPLC-MS/MS method, achieving method quantification limits (MQL) of 1.2-28 ng L(-1), forty-four of the OMPs are detected in groundwater. Regarding the vertical distribution in the aquifer system the highest variety of OMPs occurs in the shallow aquifer. Most frequently detected compounds are atrazine together with the metabolites of several triazines, desethylatrazine (DEA) and desisopropylatrazine (DIA), the corrosion inhibitors 1H-benzotriazole and tolytriazoles and as pharmaceutical residues the anti-epileptic drug carbamazepine as well as the analgesic drug phenazone. Median OMP concentrations are in the range of 20-40 ng L(-1) with occasionally and locally higher concentrations of up to 6000 ng L(-1). Defined combinations of OMPs occur repeatedly in the same observation wells and allow to distinguish different input functions. The comparison of detection frequency with the number of prescribed doses gives information about the specific persistence of pharmaceuticals. The analgesic phenazone exhibits a peculiar high detection frequency, although it is recently not prescribed in significant amounts. The detection of the estrogen antagonist tamoxifen (6-17 ng L(-1)) in a groundwater flow system is reported for the first time.


Subject(s)
Hydrodynamics , Organic Chemicals/analysis , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid , Geology , Groundwater/chemistry , Limit of Detection , Tandem Mass Spectrometry
12.
Ground Water ; 51(4): 641-50, 2013.
Article in English | MEDLINE | ID: mdl-23039080

ABSTRACT

The modeling of groundwater flow in karst aquifers is a challenge due to the extreme heterogeneity of its hydraulic parameters and the duality in their discharge behavior, that is, rapid response of highly conductive karst conduits and delayed drainage of the low-permeability fractured matrix after recharge events. There are a number of different modeling approaches for the simulation of the karst groundwater dynamics, applicable to different aquifer as well as modeling problem types, ranging from continuum models to double continuum models to discrete and hybrid models. This study presents the application of an equivalent porous model approach (EPM, single continuum model) to construct a steady-state numerical flow model for an important karst aquifer, that is, the Western Mountain Aquifer Basin (WMAB), shared by Israel and the West-Bank, using MODFLOW2000. The WMAB was used as a catchment since it is a well-constrained catchment with well-defined recharge and discharge components and therefore allows a control on the modeling approach, a very rare opportunity for karst aquifer modeling. The model demonstrates the applicability of equivalent porous medium models for the simulation of karst systems, despite their large contrast in hydraulic conductivities. As long as the simulated saturated volume is large enough to average out the local influence of karst conduits and as long as transport velocities are not an issue, EPM models excellently simulate the observed head distribution. The model serves as a starting basis that will be used as a reference for developing a long-term dynamic model for the WMAB, starting from the pre-development period (i.e., 1940s) up to date.


Subject(s)
Environmental Monitoring/methods , Groundwater/analysis , Hydrology/methods , Water Movements , Middle East , Models, Theoretical , Porosity
13.
Water Res ; 46(16): 5381-8, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22877878

ABSTRACT

Little is known with respect to the attenuation capacity of karst aquifers. Even less is known about the risk posed by emerging micropollutants in these systems. In order to identify the attenuation potential of karst aquifers in-situ and to estimate the risk posed by micropollutants, a dualtracer test was conducted in this study in order to investigate differential transport in the subsurface: The reactive compound caffeine was used as a tracer to indicate the attenuation capacity within the aquifer in-situ. Due to the low limit of quantification, only small amounts of caffeine needed to be injected. To calibrate a model and to visualize the attenuation of caffeine a conservative reference tracer (uranine) is injected simultaneously. The methodology is tested in a well-characterised karst system in southwest Germany. The results indicate a significantly higher attenuation rate than was expected for karst aquifers. The attenuation is decribed as a first-order process. The corresponding half-life is 104 h. This low half-life suggests that a generally assumed low natural attenuation capacity of karst aquifers is unjustified. The observed mass loss of caffeine illustrates the potential of caffeine to be used as reactive tracer for indicating in-situ attenuation capacity within highly hydraulically conductive systems, such as karst aquifers. Due to the high attenuation rate of caffeine it does not pose a threat as a long-time contaminant. In combination with a conservative reference tracer an economical and environmentally benign method is presented in this manuscript for the in-situ determination of the attenuation capacity of highly conductive aquifer systems.


Subject(s)
Caffeine/analysis , Carbonates/chemistry , Groundwater/chemistry , Models, Chemical , Water Movements , Water Pollutants, Chemical/analysis , Fluorescein , Germany , Half-Life
14.
PLoS One ; 7(6): e38319, 2012.
Article in English | MEDLINE | ID: mdl-22679498

ABSTRACT

Due to its extreme salinity and high Mg concentration the Dead Sea is characterized by a very low density of cells most of which are Archaea. We discovered several underwater fresh to brackish water springs in the Dead Sea harboring dense microbial communities. We provide the first characterization of these communities, discuss their possible origin, hydrochemical environment, energetic resources and the putative biogeochemical pathways they are mediating. Pyrosequencing of the 16S rRNA gene and community fingerprinting methods showed that the spring community originates from the Dead Sea sediments and not from the aquifer. Furthermore, it suggested that there is a dense Archaeal community in the shoreline pore water of the lake. Sequences of bacterial sulfate reducers, nitrifiers iron oxidizers and iron reducers were identified as well. Analysis of white and green biofilms suggested that sulfide oxidation through chemolitotrophy and phototrophy is highly significant. Hyperspectral analysis showed a tight association between abundant green sulfur bacteria and cyanobacteria in the green biofilms. Together, our findings show that the Dead Sea floor harbors diverse microbial communities, part of which is not known from other hypersaline environments. Analysis of the water's chemistry shows evidence of microbial activity along the path and suggests that the springs supply nitrogen, phosphorus and organic matter to the microbial communities in the Dead Sea. The underwater springs are a newly recognized water source for the Dead Sea. Their input of microorganisms and nutrients needs to be considered in the assessment of possible impact of dilution events of the lake surface waters, such as those that will occur in the future due to the intended establishment of the Red Sea-Dead Sea water conduit.


Subject(s)
Fresh Water/microbiology , Seawater/microbiology , Archaea/genetics , Archaea/isolation & purification , Biofilms/growth & development , Chlorobi/genetics , Chlorobi/isolation & purification , Cyanobacteria/genetics , Cyanobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Water Microbiology
15.
J Environ Manage ; 99: 61-75, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22322128

ABSTRACT

This study reports the development of a new spatial multi-criteria decision analysis (SMCDA) software tool for selecting suitable sites for Managed Aquifer Recharge (MAR) systems. The new SMCDA software tool functions based on the combination of existing multi-criteria evaluation methods with modern decision analysis techniques. More specifically, non-compensatory screening, criteria standardization and weighting, and Analytical Hierarchy Process (AHP) have been combined with Weighted Linear Combination (WLC) and Ordered Weighted Averaging (OWA). This SMCDA tool may be implemented with a wide range of decision maker's preferences. The tool's user-friendly interface helps guide the decision maker through the sequential steps for site selection, those steps namely being constraint mapping, criteria hierarchy, criteria standardization and weighting, and criteria overlay. The tool offers some predetermined default criteria and standard methods to increase the trade-off between ease-of-use and efficiency. Integrated into ArcGIS, the tool has the advantage of using GIS tools for spatial analysis, and herein data may be processed and displayed. The tool is non-site specific, adaptive, and comprehensive, and may be applied to any type of site-selection problem. For demonstrating the robustness of the new tool, a case study was planned and executed at Algarve Region, Portugal. The efficiency of the SMCDA tool in the decision making process for selecting suitable sites for MAR was also demonstrated. Specific aspects of the tool such as built-in default criteria, explicit decision steps, and flexibility in choosing different options were key features, which benefited the study. The new SMCDA tool can be augmented by groundwater flow and transport modeling so as to achieve a more comprehensive approach to the selection process for the best locations of the MAR infiltration basins, as well as the locations of recovery wells and areas of groundwater protection. The new spatial multicriteria analysis tool has already been implemented within the GIS based Gabardine decision support system as an innovative MAR planning tool.


Subject(s)
Decision Support Techniques , Groundwater , Water Supply , Geographic Information Systems , Software
16.
Water Res ; 46(2): 395-402, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22104295

ABSTRACT

Contamination from untreated wastewater leakage and related bacterial contamination poses a threat to drinking water quality. However, a quantification of the magnitude of leakage is difficult. The objective of this work is to provide a highly sensitive methodology for the estimation of the mass of untreated wastewater entering karst aquifers with rapid recharge. For this purpose a balance approach is adapted. It is based on the mass flow of caffeine in spring water, the load of caffeine in untreated wastewater and the daily water consumption per person in a spring catchment area. Caffeine is a source-specific indicator for wastewater, consumed and discharged in quantities allowing detection in a karst spring. The methodology was applied to estimate the amount of leaking and infiltrating wastewater to a well investigated karst aquifer on a daily basis. The calculated mean volume of untreated wastewater entering the aquifer was found to be 2.2 ± 0.5 m(3) d(-1) (undiluted wastewater). It corresponds to approximately 0.4% of the total amount of wastewater within the spring catchment.


Subject(s)
Caffeine/analysis , Environmental Monitoring/methods , Groundwater/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Caffeine/metabolism , Carbamazepine/analysis , Chromatography, High Pressure Liquid , Germany , Seasons , Tandem Mass Spectrometry , Theobromine/analysis , Theobromine/metabolism , Theophylline/analysis , Theophylline/metabolism , Water Movements , Water Pollutants, Chemical/metabolism
17.
J Chromatogr A ; 1217(42): 6511-21, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20832069

ABSTRACT

A multi-residue analytical method based on high-performance liquid chromatographic separation, electrospray ionization with tandem mass spectrometric detection (HPLC/MS-MS) was developed for the simultaneous analysis of 46 basic, neutral and acidic compounds covering a wide range of polarity (logK(OW)<0-5.9). The compound list included selected iodinated contrast media, analgesics, anti-inflammatories, stimulants, beta-blockers, antibiotics, lipid regulators, anti-histamines, psychiatric drugs, herbicides, corrosion inhibitors and the gastric acid regulator pantoprazole. The main feature of the presented method was a simultaneous solid phase extraction (SPE) of all analytes followed by simultaneous separation and detection by HPLC/MS-MS with electrospray ionization in both positive and negative polarization within the same chromatogram. Optimization of electrospray drying gas temperature resulted in using a temperature gradient on the ion source. Six different polymeric sorbents for SPE were compared with respect to recoveries, taking into account the specific surface of each sorbent. Method quantitation limits (MQL) in surface and seawater ranged from 1.2 to 28 ng/L, in wastewater from 5.0 to 160 ng/L, respectively. In order to demonstrate the applicability of the method, river water, treated wastewater and seawater were analyzed.


Subject(s)
Chromatography, Liquid/methods , Pharmaceutical Preparations/analysis , Tandem Mass Spectrometry/methods , Water Pollutants, Chemical/analysis , Formates , Pharmaceutical Preparations/isolation & purification , Rivers/chemistry , Seawater/chemistry , Solid Phase Extraction , Spectrometry, Mass, Electrospray Ionization , Temperature , Water Pollutants, Chemical/isolation & purification
18.
Ground Water ; 45(1): 36-45, 2007.
Article in English | MEDLINE | ID: mdl-17257337

ABSTRACT

A method to estimate reactive transport parameters as well as geometric conduit parameters from a multitracer test in a karst aquifer is provided. For this purpose, a calibration strategy was developed applying the two-region nonequilibrium model CXTFIT. The ambiguity of the model calibration was reduced by first calibrating the model with respect to conservative tracer breakthrough and later transferring conservative transport parameters to the reactive model calibration. The reactive transport parameters were only allowed to be within a defined sensible range to get reasonable calibration values. This calibration strategy was applied to breakthrough curves obtained from a large-scale multitracer test, which was performed in a karst aquifer of the Swabian Alb, Germany. The multitracer test was conducted by the simultaneous injection of uranine, sulforhodamine G, and tinopal CBS-X. The model succeeds to represent the tracer breakthrough curves (TBCs) of uranine and sulforhodamine G and verifies that tracer-rock interactions preferably occur in the immobile fluid region, although the fraction of this region amounts to only 3.5% of the total water. However, the model failed to account for the long tailing observed in the TBC of tinopal CBS-X. Sensitivity analyses reveal that model results for the conservative tracer transport are most sensitive to average velocity and volume fraction of the mobile fluid region, while dispersion and mass transfer coefficients are least influential. Consequently, reactive tracer calibration allows the determination of sorption sites in the mobile and immobile fluid region at small retardation coefficients.


Subject(s)
Fresh Water/analysis , Water Movements , Water Supply/analysis , Calibration , Fluorescent Dyes/analysis , Fluorescent Dyes/chemistry , Germany , Models, Theoretical
19.
Ground Water ; 44(6): 832-6, 2006.
Article in English | MEDLINE | ID: mdl-17087755

ABSTRACT

Ground water in karst terrains is highly vulnerable to contamination due to the rapid transport of contaminants through the highly conductive conduit system. For contamination risk assessment purposes, information about hydraulic and geometric characteristics of the conduits and their hydraulic interaction with the fissured porous rock is an important prerequisite. The relationship between aquifer characteristics and short-term responses to recharge events of both spring discharge and physicochemical parameters of the discharged water was examined using a process-based flow and transport model. In the respective software, a pipe-network model, representing fast conduit flow, is coupled to MODFLOW, which simulates flow in the fissured porous rock. This hybrid flow model was extended to include modules simulating heat and reactive solute transport in conduits. The application of this modeling tool demonstrates that variations of physicochemical parameters, such as solute concentration and water temperature, depend to a large extent on the intensity and duration of recharge events and provide information about the structure and geometry of the conduit system as well as about the interaction between conduits and fissured porous rock. Moreover, the responses of solute concentration and temperature of spring discharge appear to reflect different processes, thus complementing each other in the aquifer characterization.


Subject(s)
Models, Theoretical , Water/analysis , Computer Simulation , Geologic Sediments , Porosity , Temperature , Time Factors , Water/chemistry , Water Movements
20.
Ground Water ; 43(3): 381-8, 2005.
Article in English | MEDLINE | ID: mdl-15882329

ABSTRACT

A tracer test in a carbonate aquifer is analyzed using the method of moments and two analytical advection-dispersion models (ADMs) as well as a numerical model. The numerical model is a coupled continuum-pipe flow and transport model that accounts for two different flow components in karstified carbonate aquifers, i.e., rapid and often turbulent conduit flow and Darcian flow in the fissured porous rock. All techniques employed provide reasonable fits to the tracer breakthrough curve (TBC) measured at a spring. The resulting parameter estimates are compared to investigate how each conceptual model of flow and transport processes that forms the basis of the analyses affects the interpretation of the tracer test. Numerical modeling results suggest that the method of moments and the analytical ADMs tend to overestimate the conduit volume because part of the water discharged at the spring is wrongly attributed to the conduit system if flow in the fissured porous rock is ignored. In addition, numerical modeling suggests that mixing of the two flow components accounts for part of the dispersion apparent in the measured TBC, while the remaining part can be attributed to Taylor dispersion. These processes, however, cannot reasonably explain the tail of the TBC. Instead, retention in immobile-fluid regions as included in a nonequilibrium ADM provides a possible explanation.


Subject(s)
Models, Theoretical , Water Supply , Carbon , Environmental Monitoring/methods , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...