Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 7831, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539423

ABSTRACT

Protein micropatterning enables robust control of cell positioning on electron-microscopy substrates for cryogenic electron tomography (cryo-ET). However, the combination of regulated cell boundaries and the underlying electron-microscopy substrate (EM-grids) provides a poorly understood microenvironment for cell biology. Because substrate stiffness and morphology affect cellular behavior, we devised protocols to characterize the nanometer-scale details of the protein micropatterns on EM-grids by combining cryo-ET, atomic force microscopy, and scanning electron microscopy. Measuring force displacement characteristics of holey carbon EM-grids, we found that their effective spring constant is similar to physiological values expected from skin tissues. Despite their apparent smoothness at light-microscopy resolution, spatial boundaries of the protein micropatterns are irregular at nanometer scale. Our protein micropatterning workflow provides the means to steer both positioning and morphology of cell doublets to determine nanometer details of punctate adherens junctions. Our workflow serves as the foundation for studying the fundamental structural changes governing cell-cell signaling.


Subject(s)
Image Processing, Computer-Assisted , Proteins , Image Processing, Computer-Assisted/methods , Cryoelectron Microscopy/methods , Carbon/chemistry , Signal Transduction
2.
J Struct Biol ; 214(4): 107916, 2022 12.
Article in English | MEDLINE | ID: mdl-36332745

ABSTRACT

Nanodiscs have become a popular tool in structure determination of membrane proteins using cryogenic electron microscopy and single particle analysis. However, the structure determination of small membrane proteins remains challenging. When the embedded protein is in the same size range as the nanodisc, the nanodisc can significantly contribute to the alignment and classification during the structure determination process. In those cases, it is crucial to minimize the heterogeneity in the nanodisc preparations to assure maximum accuracy in the classification and alignment steps of single particle analysis. Here, we introduce a new in-silico method for the characterization of nanodisc samples that is based on analyzing the Feret diameter distribution of their particle projection as imaged in the electron microscope. We validated the method with comprehensive simulation studies and show that Feret signatures can detect subtle differences in nanodisc morphologies and composition that might otherwise go unnoticed. We used the method to identify a specific biochemical nanodisc preparation with low size variations, allowing us to obtain a structure of the 23-kDa single-span membrane protein Bcl-xL while embedded in a nanodisc. Feret signature analysis can steer experimental data collection strategies, allowing more efficient use of high-end data collection hardware, as well as image analysis investments in studies where nanodiscs significantly contribute to the total volume of the full molecular species.

3.
Cell Rep ; 40(12): 111364, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36130504

ABSTRACT

Mitochondria are dynamic organelles essential for cell survival whose structural and functional integrity rely on selective and regulated transport of lipids from/to the endoplasmic reticulum (ER) and across the mitochondrial intermembrane space. As they are not connected by vesicular transport, the exchange of lipids between ER and mitochondria occurs at membrane contact sites. However, the mechanisms and proteins involved in these processes are only beginning to emerge. Here, we show that the main physiological localization of the lipid transfer proteins ORP5 and ORP8 is at mitochondria-associated ER membrane (MAM) subdomains, physically linked to the mitochondrial intermembrane space bridging (MIB)/mitochondrial contact sites and cristae junction organizing system (MICOS) complexes that bridge the two mitochondrial membranes. We also show that ORP5/ORP8 mediate non-vesicular transport of phosphatidylserine (PS) lipids from the ER to mitochondria by cooperating with the MIB/MICOS complexes. Overall our study reveals a physical and functional link between ER-mitochondria contacts involved in lipid transfer and intra-mitochondrial membrane contacts maintained by the MIB/MICOS complexes.


Subject(s)
Mitochondrial Proteins , Phosphatidylserines , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Phosphatidylserines/metabolism
4.
J Cell Biol ; 221(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-35969857

ABSTRACT

Lipid droplets (LDs) are the primary organelles of lipid storage, buffering energy fluctuations of the cell. They store neutral lipids in their core that is surrounded by a protein-decorated phospholipid monolayer. LDs arise from the endoplasmic reticulum (ER). The ER protein seipin, localizing at ER-LD junctions, controls LD nucleation and growth. However, how LD biogenesis is spatially and temporally coordinated remains elusive. Here, we show that the lipid transfer proteins ORP5 and ORP8 control LD biogenesis at mitochondria-associated ER membrane (MAM) subdomains, enriched in phosphatidic acid. We found that ORP5/8 regulates seipin recruitment to these MAM-LD contacts, and their loss impairs LD biogenesis. Importantly, the integrity of ER-mitochondria contact sites is crucial for ORP5/8 function in regulating seipin-mediated LD biogenesis. Our study uncovers an unprecedented ORP5/8 role in orchestrating LD biogenesis and maturation at MAMs and brings novel insights into the metabolic crosstalk between mitochondria, ER, and LDs at the membrane contact sites.


Subject(s)
Endoplasmic Reticulum , Lipid Droplets , Mitochondria , Receptors, Steroid , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Lipid Metabolism , Mitochondria/metabolism , Phospholipids/metabolism , Receptors, Steroid/metabolism
5.
Mol Biol Cell ; 33(1): ar8, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34757852

ABSTRACT

Here we report on the related TBC/RabGAPs EPI64A and EPI64B and show that they function to organize the apical aspect of epithelial cells. EPI64A binds the scaffolding protein EBP50/NHERF1, which itself binds active ezrin in epithelial cell microvilli. Epithelial cells additionally express EPI64B that also localizes to microvilli. However, EPI64B does not bind EBP50 and both proteins are shown to have a microvillar localization domain that spans the RabGAP domains. CRISPR/Cas9 was used to inactivate expression of each protein individually or both in Jeg-3 and Caco2 cells. In Jeg-3 cells, loss of EPI64B resulted in a reduction of apical microvilli, and a further reduction was seen in the double knockout, mostly likely due to misregulation of Rab8 and Rab35. In addition, apical junctions were partially disrupted in cells lacking EPI64A and accentuated in the double knockout. In Caco2 loss of EPI64B resulted in wavy junctions, whereas loss of both EPI64A and EPI64B had a severe phenotype often resulting in cells with a stellate apical morphology. In the knockout cells, the basal region of the cell remained unchanged, so EPI64A and EPI64B specifically localize to and regulate the morphology of the apical domain of polarized epithelial cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Epithelial Cells/metabolism , GTPase-Activating Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Binding Sites , Caco-2 Cells , Cell Line, Tumor , Cell Polarity , Cytoskeletal Proteins , Epithelial Cells/physiology , GTPase-Activating Proteins/physiology , Humans , Microvilli/genetics , Microvilli/metabolism , Phosphoproteins/metabolism , Phosphorylation , Protein Binding/physiology
6.
J Cell Biol ; 220(6)2021 06 07.
Article in English | MEDLINE | ID: mdl-33836044

ABSTRACT

Activated ezrin-radixin-moesin (ERM) proteins link the plasma membrane to the actin cytoskeleton to generate apical structures, including microvilli. Among many kinases implicated in ERM activation are the homologues LOK and SLK. CRISPR/Cas9 was used to knock out all ERM proteins or LOK/SLK in human cells. LOK/SLK knockout eliminates all ERM-activating phosphorylation. The apical domains of cells lacking LOK/SLK or ERMs are strikingly similar and selectively altered, with loss of microvilli and with junctional actin replaced by ectopic myosin-II-containing apical contractile structures. Constitutively active ezrin can reverse the phenotypes of either ERM or LOK/SLK knockouts, indicating that a central function of LOK/SLK is to activate ERMs. Both knockout lines have elevated active RhoA with concomitant enhanced myosin light chain phosphorylation, revealing that active ERMs are negative regulators of RhoA. As RhoA-GTP activates LOK/SLK to activate ERM proteins, the ability of active ERMs to negatively regulate RhoA-GTP represents a novel local feedback loop necessary for the proper apical morphology of epithelial cells.


Subject(s)
Actin Cytoskeleton/physiology , Cell Membrane/metabolism , Cytoskeletal Proteins/metabolism , Epithelial Cells/metabolism , Membrane Proteins/metabolism , Microfilament Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Cytoskeletal Proteins/genetics , Epithelial Cells/cytology , HeLa Cells , Humans , Membrane Proteins/genetics , Microfilament Proteins/genetics , Phosphorylation , rhoA GTP-Binding Protein/genetics
7.
EMBO Rep ; 19(6)2018 06.
Article in English | MEDLINE | ID: mdl-29661855

ABSTRACT

Mitochondria are double-membrane-bound organelles that constantly change shape through membrane fusion and fission. Outer mitochondrial membrane fusion is controlled by Mitofusin, whose molecular architecture consists of an N-terminal GTPase domain, a first heptad repeat domain (HR1), two transmembrane domains, and a second heptad repeat domain (HR2). The mode of action of Mitofusin and the specific roles played by each of these functional domains in mitochondrial fusion are not fully understood. Here, using a combination of in situ and in vitro fusion assays, we show that HR1 induces membrane fusion and possesses a conserved amphipathic helix that folds upon interaction with the lipid bilayer surface. Our results strongly suggest that HR1 facilitates membrane fusion by destabilizing the lipid bilayer structure, notably in membrane regions presenting lipid packing defects. This mechanism for fusion is thus distinct from that described for the heptad repeat domains of SNARE and viral proteins, which assemble as membrane-bridging complexes, triggering close membrane apposition and fusion, and is more closely related to that of the C-terminal amphipathic tail of the Atlastin protein.


Subject(s)
GTP Phosphohydrolases/physiology , Membrane Fusion , Mitochondria/physiology , Mitochondrial Dynamics , Mitochondrial Membrane Transport Proteins/physiology , Mitochondrial Proteins/physiology , Animals , Cells, Cultured , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , Lipid Bilayers/metabolism , Mice , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Protein Domains
8.
Elife ; 62017 04 21.
Article in English | MEDLINE | ID: mdl-28430576

ABSTRACT

How cells specify morphologically distinct plasma membrane domains is poorly understood. Prior work has shown that restriction of microvilli to the apical aspect of epithelial cells requires the localized activation of the membrane-F-actin linking protein ezrin. Using an in vitro system, we now define a multi-step process whereby the kinase LOK specifically phosphorylates ezrin to activate it. Binding of PIP2 to ezrin induces a conformational change permitting the insertion of the LOK C-terminal domain to wedge apart the membrane and F-actin-binding domains of ezrin. The N-terminal LOK kinase domain can then access a site 40 residues distal from the consensus sequence that collectively direct phosphorylation of the appropriate threonine residue. We suggest that this elaborate mechanism ensures that ezrin is only phosphorylated at the plasma membrane, and with high specificity by the apically localized kinase LOK.


Subject(s)
Cytoskeletal Proteins/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Cytoskeletal Proteins/chemistry , Humans , Models, Biological , Phosphorylation , Protein Conformation , Protein Serine-Threonine Kinases/chemistry
9.
Annu Rev Cell Dev Biol ; 31: 593-621, 2015.
Article in English | MEDLINE | ID: mdl-26566117

ABSTRACT

Microvilli are actin-based structures found on the apical aspect of many epithelial cells. In this review, we discuss different types of microvilli, as well as comparisons with actin-based sensory stereocilia and filopodia. Much is known about the actin-bundling proteins of these structures; we summarize recent studies that focus on the components of the microvillar membrane. We pay special attention to mechanisms of membrane microfilament attachment by the ezrin/radixin/moesin family and regulation of this protein family. We also discuss the NHERF family of scaffolding proteins that are found in microvilli and their role in microvilli regulation. Microvilli on cultured cells are not static structures, and their dynamics and those of their components are discussed. Finally, we mention diseases related to microvilli and outline questions that our current knowledge will allow the field to address in the near future.


Subject(s)
Epithelial Cells/physiology , Microvilli/physiology , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/physiology , Actins/metabolism , Animals , Humans , Membranes/metabolism , Membranes/physiology
10.
Mol Biol Cell ; 26(20): 3615-27, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26310448

ABSTRACT

We examine the dynamics and function of the apical scaffolding protein E3KARP/NHERF2, which consists of two PDZ domains and a tail containing an ezrin-binding domain. The exchange rate of E3KARP is greatly enhanced during mitosis due to phosphorylation at Ser-303 in its tail region. Whereas E3KARP can substitute for the function of the closely related scaffolding protein EBP50/NHERF1 in the formation of interphase microvilli, E3KARP S303D cannot. Moreover, the S303D mutation enhances the in vivo dynamics of the E3KARP tail alone, whereas in vitro the interaction of E3KARP with active ezrin is unaffected by S303D, implicating another factor regulating dynamics in vivo. A-Raf is found to be required for S303 phosphorylation in mitotic cells. Regulation of the dynamics of EBP50 is known to be dependent on its tail region but modulated by PDZ domain occupancy, which is not the case for E3KARP. Of interest, in both cases, the mechanisms regulating dynamics involve the tails, which are the most diverged region of the paralogues and probably evolved independently after a gene duplication event that occurred early in vertebrate evolution.


Subject(s)
Cell Cycle/physiology , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Binding Sites , Caco-2 Cells , Cell Culture Techniques , Cell Cycle/genetics , Cytoskeletal Proteins/metabolism , Humans , Mass Spectrometry , Mitosis/physiology , Nuclear Matrix-Associated Proteins/metabolism , PDZ Domains/genetics , Phosphoproteins/genetics , Phosphorylation , Phylogeny , Protein Binding , Proto-Oncogene Proteins A-raf/metabolism , Sodium-Hydrogen Exchangers/genetics
11.
PLoS One ; 8(9): e76380, 2013.
Article in English | MEDLINE | ID: mdl-24086735

ABSTRACT

During the Leishmania life cycle, the flagellum undergoes successive assembly and disassembly of hundreds of proteins. Understanding these processes necessitates the study of individual components. Here, we investigated LdFlabarin, an uncharacterized L. donovani flagellar protein. The gene is conserved within the Leishmania genus and orthologous genes only exist in the Trypanosoma genus. LdFlabarin associates with the flagellar plasma membrane, extending from the base to the tip of the flagellum as a helicoidal structure. Site-directed mutagenesis, deletions and chimera constructs showed that LdFlabarin flagellar addressing necessitates three determinants: an N-terminal potential acylation site and a central BAR domain for membrane targeting and the C-terminal domain for flagellar specificity. In vitro, the protein spontaneously associates with liposomes, triggering tubule formation, which suggests a structural/morphogenetic function. LdFlabarin is the first characterized Leishmania BAR domain protein, and the first flagellum-specific BAR domain protein.


Subject(s)
Evolution, Molecular , Flagella/genetics , Leishmania/genetics , Membrane Proteins/genetics , Phylogeny , Base Sequence , Computational Biology , Flagella/metabolism , Flagella/ultrastructure , Leishmania/metabolism , Liposomes/metabolism , Membrane Proteins/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Binding , Protein Structure, Tertiary , Sequence Analysis, DNA
12.
Mol Biol Cell ; 24(21): 3381-92, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23985317

ABSTRACT

The closely related apical scaffolding proteins ERM-binding phosphoprotein of 50 kDa (EBP50) and NHE3 kinase A regulatory protein (E3KARP) both consist of two postsynaptic density 95/disks large/zona occludens-1 (PDZ) domains and a tail ending in an ezrin-binding domain. Scaffolding proteins are thought to provide stable linkages between components of multiprotein complexes, yet in several types of epithelial cells, EBP50, but not E3KARP, shows rapid exchange from microvilli compared with its binding partners. The difference in dynamics is determined by the proteins' tail regions. Exchange rates of EBP50 and E3KARP correlated strongly with their abilities to precipitate ezrin in vivo. The EBP50 tail alone is highly dynamic, but in the context of the full-length protein, the dynamics is lost when the PDZ domains are unable to bind ligand. Proteomic analysis of the effects of EBP50 dynamics on binding-partner preferences identified a novel PDZ1 binding partner, the I-BAR protein insulin receptor substrate p53 (IRSp53). Additionally, the tails promote different microvillar localizations for EBP50 and E3KARP, which localized along the full length and to the base of microvilli, respectively. Thus the tails define the localization and dynamics of these scaffolding proteins, and the high dynamics of EBP50 is regulated by the occupancy of its PDZ domains.


Subject(s)
Molecular Dynamics Simulation , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism , Amino Acid Sequence , Animals , Binding Sites/genetics , Caco-2 Cells , Cell Line , Cell Line, Tumor , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Fluorescence Resonance Energy Transfer , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Microscopy, Fluorescence , Microvilli/metabolism , Molecular Sequence Data , Mutation , PDZ Domains/genetics , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Binding , Sequence Homology, Amino Acid , Sodium-Hydrogen Exchangers/chemistry , Sodium-Hydrogen Exchangers/genetics , Time-Lapse Imaging/methods
13.
PLoS One ; 7(11): e49639, 2012.
Article in English | MEDLINE | ID: mdl-23166736

ABSTRACT

Mitochondria are highly dynamic organelles that continuously move, fuse and divide. Mitochondrial dynamics modulate overall mitochondrial morphology and are essential for the proper function, maintenance and transmission of mitochondria and mitochondrial DNA (mtDNA). We have investigated mitochondrial fusion in yeast cells with severe defects in oxidative phosphorylation (OXPHOS) due to removal or various specific mutations of mtDNA. We find that, under fermentative conditions, OXPHOS deficient cells maintain normal levels of cellular ATP and ADP but display a reduced mitochondrial inner membrane potential. We demonstrate that, despite metabolic compensation by glycolysis, OXPHOS defects are associated to a selective inhibition of inner but not outer membrane fusion. Fusion inhibition was dominant and hampered the fusion of mutant mitochondria with wild-type mitochondria. Inhibition of inner membrane fusion was not systematically associated to changes of mitochondrial distribution and morphology, nor to changes in the isoform pattern of Mgm1, the major fusion factor of the inner membrane. However, inhibition of inner membrane fusion correlated with specific alterations of mitochondrial ultrastructure, notably with the presence of aligned and unfused inner membranes that are connected to two mitochondrial boundaries. The fusion inhibition observed upon deletion of OXPHOS related genes or upon removal of the entire mtDNA was similar to that observed upon introduction of point mutations in the mitochondrial ATP6 gene that are associated to neurogenic ataxia and retinitis pigmentosa (NARP) or to maternally inherited Leigh Syndrome (MILS) in humans. Our findings indicate that the consequences of mtDNA mutations may not be limited to OXPHOS defects but may also include alterations in mitochondrial fusion. Our results further imply that, in healthy cells, the dominant inhibition of fusion could mediate the exclusion of OXPHOS-deficient mitochondria from the network of functional, fusogenic mitochondria.


Subject(s)
DNA, Mitochondrial , Membrane Fusion , Mitochondrial Membranes/metabolism , Mutation , GTP-Binding Proteins/metabolism , Membrane Potential, Mitochondrial , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Oxidative Phosphorylation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
14.
Med Sci (Paris) ; 26(10): 823-9, 2010 Oct.
Article in French | MEDLINE | ID: mdl-20929672

ABSTRACT

Mitochondria are dynamic organelles that continuously move, fuse and divide. Their overall morphology, ranging from a filamentous network to a collection of isolated dots, is determined by fusion-fission equilibrium, which depends on the cellular and physiological context. The machineries of fusion and fission, that are conserved throughout evolution, include three large GTPases of the dynamin-superfamily: Dnm1/DRP1 - involved in fission - as well as Fzo1/MFN and Mgm1/OPA1 - required for fusion. While the activities, mecanisms and regulations of mitochondrial fusion and fission machineries continue to be unravelled, the relevance of mitochondrial dynamics is witnessed by their impact on organelle functions, cell survival and cell differenciation, their requirement for embryonic development and their involvement in neurological diseases.


Subject(s)
Mitochondria/physiology , Mitochondria/ultrastructure , Animals , Biological Evolution , Biomechanical Phenomena , Cell Fusion , Gene Deletion , Gene Knockout Techniques , Humans , Kinetics , Mutation , Nervous System Diseases/physiopathology , Organelles/physiology , Organelles/ultrastructure
15.
Semin Cell Dev Biol ; 21(6): 558-65, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20025987

ABSTRACT

Mitochondria are the site where oxidative phosphorylations (OXPHOSs) take place. Fusion and fission reactions allow them to change their overall morphology, which ranges from networks of elongated and branched filaments to collections of small individual organelles. It is assumed that mitochondrial bioenergetics and dynamics are linked and that mitochondrial morphology reflects their functional status. This review shows that the links between mitochondrial dynamics and bioenergetics are complex and that mitochondrial deficiencies are not systematically associated to fragmentation. In mammals, mitochondrial fragmentation is observed upon inhibition of OXPHOS with drugs, but not in most cellular models with OXPHOS deficits of genetic origin. In yeast, mitochondrial biogenesis and filament interconnectivity augment with increasing respiratory capacity, but mutation or inhibition of the respiratory chain does not provoke major morphological changes. Significant structural and morphological alterations appear restricted to mutation of genes involved in assembly or function of the F(1)F(0)-ATP-synthase. Finally, ex vivo studies (in mammals) and in vitro studies (in yeast) confirm the essential role of the inner membrane potential for mitochondrial fusion.


Subject(s)
Energy Metabolism , Mitochondria/metabolism , Mitochondria/ultrastructure , Animals , Humans , Membrane Fusion , Mitochondrial Proton-Translocating ATPases/metabolism , Oxidative Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...