Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38405930

ABSTRACT

Although distinct thalamic nuclei encode sensory information for almost all sensory modalities, the existence of a thalamic representation of temperature with a role in thermal perception remains unclear. To address this, we performed high-density electrophysiological recordings across the entire forelimb somatosensory thalamus in awake mice, and identified an anterior and a posterior representation of temperature that spans three thalamic nuclei. We found that these parallel representations show fundamental differences in the cellular encoding of temperature which reflects their cortical output targets. While the anterior representation encodes cool only and the posterior both cool and warm; in both representations cool was more densely represented and showed shorter latency, more transient responses as compared to warm. Moreover, thalamic inactivation showed a major role in thermal perception. Our comprehensive dataset identifies the thalamus as a key structure in thermal processing and highlights a novel posterior pathway in the thalamic representation of warm and cool.

2.
Neuroscience ; 491: 75-86, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35306143

ABSTRACT

Somatosensory neurons detect vital information about the environment and internal status of the body, such as temperature, touch, itch, and proprioception. The circuit mechanisms controlling the coding of somatosensory information and the generation of appropriate behavioral responses are not clear yet. In order to address this issue, it is important to define the precise connectivity patterns between primary sensory afferents dedicated to the detection of different stimuli and recipient neurons in the central nervous system. In this study we describe and validate a rabies tracing approach for mapping mouse spinal circuits receiving sensory input from distinct, genetically defined, modalities. We analyzed the anatomical organization of spinal circuits involved in coding of thermal and mechanical stimuli and showed that somatosensory information from distinct modalities is relayed to partially overlapping ensembles of interneurons displaying stereotyped laminar organization, thus highlighting the importance of positional features and population coding for the processing and integration of somatosensory information.


Subject(s)
Central Nervous System , Rabies , Animals , Central Nervous System/physiology , Interneurons/physiology , Mice , Neurons/physiology , Rabies/physiopathology , Spine
3.
Front Neuroanat ; 11: 61, 2017.
Article in English | MEDLINE | ID: mdl-28824383

ABSTRACT

Poly (ADP-ribose) polymerases (PARPs) are enzymes that catalyze ADP-ribose units transfer from NAD to their substrate proteins. It has been observed that PARP-1 is able to increase both post-ischemic and excitotoxic neuronal death. In fact, we have previously shown that, INO-1001, a PARP-1 inhibitor, displays a neuroprotective effect in the R6/2 model of Huntington's disease (HD). In this study, we investigated the effects of PARP-1-inhibition on modulation of phosphorylated c-AMP response element binding protein (pCREB) and CREB-binding protein (CBP) localization in the different striatal neuronal subsets. Moreover, we studied the neurodegeneration of those interneurons that are particularly vulnerable to HD such as parvalbuminergic and calretininergic, and of other subclasses of interneurons that are known to be resistant, such as cholinergic and somatostatinergic interneurons. Transgenic mice were treated with INO-1001 (10 mg/Kg daily) starting from 4 weeks of age. Double-label immunofluorescence was performed to value the distribution of CBP in ubiquitinated Neuronal intranuclear inclusions (NIIs) in the striatum. INO-1001-treated and saline-treated brain sections were incubated with: goat anti-choline acetyl transferase; goat anti-nitric oxide synthase; mouse anti-parvalbumin and mouse anti-calretinin. Morphometric evaluation and cell counts were performed. Our study showed that the PARP inhibitor has a positive effect in sparing parvalbumin and calretinin-containing interneurons of the striatum, where CREB was upregulated. Moreover, INO-1001 promoted CBP localization into the nuclei of the R6/2 mouse. The sum of our data corroborates the previous observations indicating PARP inhibition as a possible therapeutic tool to fight HD.

SELECTION OF CITATIONS
SEARCH DETAIL
...