Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Harmful Algae ; 135: 102628, 2024 May.
Article in English | MEDLINE | ID: mdl-38830707

ABSTRACT

Diatoms of the genus Pseudo-nitzschia are widespread in marine waters. Some of them can produce the toxin domoic acid (DA) which can be responsible for amnesic shellfish poisoning (ASP) when transferred into the food web. These ASP events are of major concern, due to their ecological and socio-economic repercussions, particularly on the shellfish industry. Many studies have focused on the influence of abiotic factors on DA induction, less on the role of biotic interactions. Recently, the presence of predators has been shown to increase DA production in several Pseudo-nitzschia species, in particular in Arctic areas. In order to investigate the relationship between Pseudo-nitzschia species and grazers from the French coast, exposures between one strain of three species (P. australis, P. pungens, P. fraudulenta) and the copepod Temora longicornis were conducted for 5 days. Cellular and dissolved DA content were enhanced by 1,203 % and 1,556 % respectively after the 5-days exposure of P.australis whereas no DA induction was observed in P. pungens and P. fraudulenta. T. longicornis consumed all three Pseudo-nitzschia species. The copepod survival was not related to DA content. This study is an essential first step to better understanding the interactions between planktonic species from the French coast and highlights the potential key role of copepods in the Pseudo-nitzschia bloom events in the temperate ecosystems.


Subject(s)
Copepoda , Diatoms , Kainic Acid , Kainic Acid/analogs & derivatives , Kainic Acid/metabolism , Copepoda/physiology , Copepoda/metabolism , Diatoms/metabolism , Diatoms/physiology , Animals , France , Marine Toxins/metabolism
2.
Toxins (Basel) ; 13(8)2021 08 19.
Article in English | MEDLINE | ID: mdl-34437448

ABSTRACT

Among Pseudo-nitzschia species, some produce the neurotoxin domoic acid (DA), a source of serious health problems for marine organisms. Filter-feeding organisms-e.g., bivalves feeding on toxigenic Pseudo-nitzschia spp.-are the main vector of DA in humans. However, little is known about the interactions between bivalves and Pseudo-nitzschia. In this study, we examined the interactions between two juvenile bivalve species-oyster (Crassostrea gigas) and scallop (Pecten maximus)-and two toxic Pseudo-nitzschia species-P. australis and P. fraudulenta. We characterized the influence of (1) diet composition and the Pseudo-nitzschia DA content on the feeding rates of oysters and scallops, and (2) the presence of bivalves on Pseudo-nitzschia toxin production. Both bivalve species fed on P. australis and P. fraudulenta. However, they preferentially filtered the non-toxic Isochrysis galbana compared to Pseudo-nitzschia. The presence of the most toxic P. australis species resulted in a decreased clearance rate in C. gigas. The two bivalve species accumulated DA in their tissues (up to 0.35 × 10-3 and 5.1 × 10-3 µg g-1 for C. gigas and P. maximus, respectively). Most importantly, the presence of bivalves induced an increase in the cellular DA contents of both Pseudo-nitzschia species (up to 58-fold in P. fraudulenta in the presence of C. gigas). This is the first evidence of DA production by Pseudo-nitzschia species stimulated in the presence of filter-feeding bivalves. The results of this study highlight complex interactions that can influence toxin production by Pseudo-nitzschia and accumulation in bivalves. These results will help to better understand the biotic factors that drive DA production by Pseudo-nitzschia and bivalve contamination during Pseudo-nitzschia blooms.


Subject(s)
Crassostrea/physiology , Diatoms/physiology , Feeding Behavior/drug effects , Kainic Acid/toxicity , Marine Toxins/toxicity , Neurotoxins/toxicity , Pecten/physiology , Animals , Haptophyta/physiology , Kainic Acid/analogs & derivatives , Shellfish Poisoning , Species Specificity
3.
J Phycol ; 55(5): 1126-1139, 2019 10.
Article in English | MEDLINE | ID: mdl-31250442

ABSTRACT

We used a multistrain approach to study the intra- and interspecific variability of the growth rates of three Pseudo-nitzschia species - P. australis, P. fraudulenta, and P. pungens - and of their domoic acid (DA) production. We carried out mating and batch experiments to investigate the respective effects of strain age and cell size, and thus the influence of their life cycle on the physiology of these species. The cell size - life cycle relationship was characteristic of each species. The influence of age and cell size on the intraspecific variability of growth rates suggests that these characteristics should be considered cautiously for the strains used in physiological studies on Pseudo-nitzschia species. The results from all three species do not support the hypothesis of a decrease in DA production with time since isolation from natural populations. In P. australis, the cellular DA content was rather a function of cell size. More particularly, cells at the gametangia stage of their life cycle contained up to six times more DA than smaller or larger cells incapable of sexual reproduction. These findings reveal a link between P. australis life cycle and cell toxicity. This suggest that life cycle dynamics in Pseudo-nitzschia natural populations may influence bloom toxicity.


Subject(s)
Diatoms , Animals , Kainic Acid , Life Cycle Stages
SELECTION OF CITATIONS
SEARCH DETAIL
...